Синодический период обращения планеты вокруг солнца равен 4 5 года
§ 11. К онфигурация планет. С инодический период
1. Конфигурация планет и условия их видимости
У словия видимости планет Подробные сведения о положении планет и условиях их видимости даются в «Школьном астрономическом календаре» на каждый учебный год. Эту информацию можно найти и в Интернете. меняются по-разному: если Меркурий и Венеру можно видеть только утром или вечером, то остальные — Марс, Юпитер и Сатурн — бывают видны также и ночью. По временам одна или несколько планет могут быть вовсе не видны, поскольку они располагаются на небе поблизости от Солнца. В этом случае говорят, что планета находится в соединении с Солнцем. Если же планета располагается на небе вблизи точки, диаметрально противоположной Солнцу, то она находится в противостоянии . В этом случае планета появляется над горизонтом в то время, когда Солнце заходит, а заходит она одновременно с восходом Солнца. Следовательно, всю ночь планета находится над горизонтом.
Соединение и противостояние, а также другие характерные расположения планеты относительно Солнца называются конфигурациями . Внутренние планеты (Меркурий и Венера), которые всегда находятся внутри земной орбиты, и внешние, которые движутся вне её (все остальные планеты), меняют свои конфигурации по-разному. Названия различных конфигураций внутренних и внешних планет, которые характеризуют расположение планеты относительно Солнца на небе, приведены в таблице и на рисунке 3.4.
Рис. 3.4. Конфигурации внутренней и внешней планеты
Источник
1. вычислите синодический период планеты, если её период обращения вокруг солнца равен 4,5 года.
2. противостояние марса произошло 7 ноября 2005 года. когда наступило следующее, если звездный период обращения марса равен 686 суток?
3. наибольшее удаление венеры от солнца составило 47. определите расстояние от земли до венеры.
4. рассчитайте синодический период обращения сатурна, если он делает полный оборот вокруг солнца за 29,46 года.
5. какой сидерический период обращения урана, если его противостояния повторяются через 370 земных суток?
6. нижнее соединение венеры повторяется каждые 584 дня. определите время, за которое планета делает полный оборот вокруг солнца.
Ответы
1) период её вращения равен периоду обращения вокруг Земли
5) ядерная реакция
6) водород и гелий
1. D) Луна движется вокруг Солнца.
2. А) Увеличение массы одного из них в 2 раза
4. А) увеличилось в 3 раза
7. D) масса планеты мала по сравнению с массой Солнца
9. А) в 4 раза больше.
10. С) движутся иногда в направлении, противоположном движению звезд.
12. С) Годичный параллакс звезд.
14. В) параллакс планеты уменьшится в 2 раза, угловой диаметр планеты уменьшится в 2 раза.
15. А) различием скоростей движения Земли и планеты по орбитам.
16. С) периода обращения вокруг Солнца.
17. В) уменьшится в 2 раза.
1. Самый первый астероид, открытый 1 января 1801 г был назван Церерой. В настоящее время Церера классифицируется как карликовая планета. Эксцентриситет орбиты Цереры равен 0,0793, большая ось 5,54 а.е.
1) 413 767 000 км (2,7653 а. е.)
3) Чему равно наибольшее расстояние от Цереры до солнца?
2. Комета Галлея наиболее удалена, афелий — 5,24 млрд км
3. Наибольшее расстояние от кометы до солнца — 4,737539 а. е., большую полуось — 3.123919 а. е. и эксцентриситет её орбиты. — 0,516537
4.чем дальше планета от Солнца, тем её сидерический период больше
1. Третий закон Кеплера гласит, что квадраты периодов обращения тел относятся как кубы больших полуосей орбит этих тел. По условию . Значит, отношение периодов равно:
.
2. Используем всё тот же третий закон Кеплера. По условию: . Значит, отношение больших полуосей этих тел равно:
.
3. Космические тела (в т. ч. кометы) движутся вокруг звёзд по эллиптическим орбитам, причём звезда находится в одном из фокусов эллипса. Минимальное расстояние от кометы до Солнца — это расстояние от фокуса до вершины эллипса, а максимальное расстояние — это расстояние от фокуса до противоположной вершины. Минимальное и максимальное расстояния лежат на одной прямой, которая называется большой осью эллипса. Соответственно, большая полуось равна половине большой оси эллипса. Для её нахождения нужно сложить максимальное и минимальные расстояния до Солнца и разделить эту сумму на два: а. е. .
Источник
ИНФОФИЗ — мой мир.
Весь мир в твоих руках — все будет так, как ты захочешь
Весь мир в твоих руках — все будет так, как ты захочешь
Как сказал.
Вопросы к экзамену
Для всех групп технического профиля
Список лекций по физике за 1,2 семестр
Урок 08. Практическая работа № 2 «Законы Кеплера. Определение масс небесных тел»
Тема: Законы Кеплера. Определение масс небесных тел
Цель занятия: Освоить методику решения задач, используя законы движения планет.
Теоретические сведения
При решении задач неизвестное движение сравнивается с уже известным путём применения законов Кеплера и формул синодического периода обращения.
Первый закон Кеплера. Все планеты движутся по эллипсам, в одном из фокусов которого находится Солнце.
Второй закон Кеплера. Радиус-вектор планеты описывает в равные времена равные площади.
Третий закон Кеплера. Квадраты времен обращения планет относятся как кубы больших полуосей их орбит:
Для определения масс небесных тел применяют обобщённый третий закон Кеплера с учётом сил всемирного тяготения:
,
где М1 и М2 -массы каких-либо небесных тел, а m1 и m2 — соответственно массы их спутников.
Обобщённый третий закон Кеплера применим и к другим системам, например, к движению планеты вокруг Солнца и спутника вокруг планеты. Для этого сравнивают движение Луны вокруг Земли с движением спутника вокруг той планеты, массу которой определяют, и при этом массами спутников в сравнении с массой центрального тела пренебрегают. При этом в исходной формуле индекс надо отнести к движению Луны вокруг Земли массой , а индекс 2 –к движению любого спутника вокруг планеты массой . Тогда масса планеты вычисляется по формуле:
,
где Тл и α л— период и большая полуось орбиты спутника планеты , М⊕ -масса Земли.
Формулы, определяющие соотношение между сидерическим (звёздным) Т и синодическим периодами S планеты и периодом обращения Земли , выраженными в годах или сутках,
а) для внешней планеты формула имеет вид:
б) для внутренней планеты:
Выполнение работы
Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?
Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км
Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?
Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.
Задание 5. Марс дальше от Солнца, чем Земля, в 1.5 раза. Какова продолжительность года на Марсе? Орбиты планет считать круговыми.
Задание 6. Синодический период планеты 500 суток. Определите большую полуось её орбиты и звёздный (сидерический) период обращения.
Задание 7. Определить период обращения астероида Белоруссия если большая полуось его орбиты а=2,4 а.е.
Задание 8. Звёздный период обращения Юпитера вокруг Солнца Т=12 лет. Каково среднее расстояние от Юпитера до Солнца?
Примеры решения задач 1-4
Задание 1. За какое время Марс, находящийся от Солнца примерно в полтора раза, чем Земля, совершает полный оборот вокруг Солнца?
Задание 2. Вычислить массу Юпитера, зная, что его спутник Ио совершает оборот вокруг планеты за 1,77 суток, а большая полуось его орбиты – 422 тыс. км
Задание 3. Противостояния некоторой планеты повторяются через 2 года. Чему равна большая полуось её орбиты?
Задание 4. Определите массу планеты Уран (в массах Земли), если известно, что спутник Урана Титания обращается вокруг него с периодом 8,7 сут. на среднем расстоянии 438 тыс. км. для луны эти величины равны соответственно 27,3 сут. и 384 тыс. км.
Источник
Конфигурация планет. Синодический период
Синодический и сидерический периоды обращения планет
Конфигурации планеты периодически повторяются.
Промежуток времени между двумя последовательными одноимёнными конфигурациями планеты (например, верхними соединениями) называется её синодическим периодом.
Ещё в глубокой древности, когда считалось, что планеты обращаются вокруг Земли, для каждой из них на основе многолетних наблюдении был определен синодический период обращения.
Согласно гелиоцентрической системе, сама Земля обращается вокруг Солнца с периодом, равным году. Это её движение необходимо учитывать, чтобы узнать периоды обращения планет в невращающейся инерциальной системе отсчёта, или, как принято говорить, по отношению к звёздам.
Период обращения планеты вокруг Солнца по отношению к звёздам называется звёздным (или сидерическим) периодом.
Очевидно, что по своей продолжительности синодический период планеты не совпадает ни с её сидерическим периодом, ни с годом, который является звездным периодом обращения Земли.
Рассмотрим, как связан синодический период планеты со звёздными периодами Земли и самой планеты. Чем ближе планета к Солнцу, тем быстрее она совершает свой оборот вокруг него. Пусть звёздный период обращения внешней планеты равен Р, звёздный период Земли — T(T Вопросы
1. Что называется конфигурацией планеты? 2. Какие планеты считаются внутренними, какие — внешними? 3. В какой конфигурации может находиться любая планета? 4. Какие планеты могут находиться в противостоянии? Какие — не могут? 5. Назовите планеты, которые могут наблюдаться рядом с Луной во время её полнолуния.
1. Нарисуйте, как будут располагаться на своих орбитах Земля и планета: а) Меркурий — в нижнем соединении; б) Венера — в верхнем соединении; в) Юпитер — в противостоянии; г) Сатурн — в верхнем соединении. 2. В какое время суток (утром или вечером) будет видна Венера, если она расположена так, как показано на рисунке 3.4, г? 3. Сравните условия видимости Марса в положениях, показанных на рисунках 3.4, в и 3.4, а. 4. Оцените, сколько примерно времени и когда (утром или вечером) может наблюдаться Венера, если она удалена к востоку от Солнца на 45°. 5. Через какой промежуток времени встречаются на циферблате часов минутная и часовая стрелки? 6. Звёздный период обращения Юпитера равен 12 годам. Через какой промежуток времени повторяются его противостояния?
Источник
§ 4. Законы движения планет
Изучив этот параграф, мы узнаем:
- что планеты в Солнечной системе движутся согласно законам Кеплера;
- о законе всемирного тяготения, который управляет движением всех космических тел — от планет до галактик.
Конфигурациями планет называют характерные взаимные положения планет относительно Земли и Солнца |
Конфигурации планет
Конфигурации планет определяют расположение планет относительно Земли и Солнца и обусловливают их видимость на небе. Все планеты светятся отраженным солнечным светом, поэтому лучше всего видна та планета, которая находится ближе к Земле, при условии, если к нам повернуто ее дневное, освещенное Солнцем полушарие.
На рис. 4.1 изображено противостояние (ПС) Марса (М1), то есть такая конфигурация, когда Земля находится на одной прямой между Марсом и Солнцем. В противостоянии яркость планеты самая большая, потому что к Земле обращено все ее дневное полушарие.
Орбиты двух планет, Меркурия и Венеры, расположены ближе к Солнцу, чем Земля, поэтому в противостоянии они не бывают. В положении, когда Венера или Меркурий находятся ближе всего к Земле, их не видно, потому что к нам повернуто ночное полушарие планеты (рис. 4.1). Такая конфигурация называется нижним соединением с Солнцем В верхнем соединении планету тоже не видно, потому что между ней и Землей находится яркое Солнце.
Рис. 4.1. Конфигурации Венеры и Марса. Противостояние Марса — планета находится ближе всего к Земле, ее видно всю ночь в противоположном от Солнца направлении. Венеру лучше всего видно вечером в восточную элонгацию слева от Солнца В1 и утром во время западной элонгации справа от Солнца В2
Противостояние — планета видна с Земли целую ночь в противоположном от Солнца направлении Элонгация — видимое с поверхности Земли угловое расстояние между планетой и Солнцем |
Лучшие условия для наблюдения Венеры и Меркурия бывают в конфигурациях, называемых элонгациями. Восточная элонгация (ВЭ) — это положение, когда планета видна вечером В1 слева от Солнца. Западная элонгация (ЗЭ) Венеры наблюдается утром, когда планета видна справа от Солнца в восточной части небосклона B2.
Конфигурации ярких планет
Условные обозначения: ПС — противостояние, планета видна всю ночь; Сп — сообщение с Солнцем, планета не видна; (ВЭ) — восточная элонгация, планета видна вечером в западной части горизонта; ЗЭ — западная элонгация, планета видна утром в восточной части небосклона.
Сидерический и синодический периоды обращения планет
Сидерический период обращения определяет движение тел относительно звезд. Это время, за которое планета, двигаясь по орбите, совершает полный оборот вокруг Солнца (рис. 4.2).
Рис. 4.2. Путь, соответствующий сидерическому периоду обращения Марса вокруг Солнца, изображен пунктиром синего цвета, синодическому — пунктиром красного цвета
Синодический период обращения определяет движение тел относительно Земли и Солнца. Это промежуток времени, за который наблюдаются одни и те же последовательные конфигурации планет (противостояние, соединение, элонгация). На рис. 4.2 положения С—З1—М1 и С—32—М2 — два последовательных противостояния Марса. Между синодическим S и сидерическим Т периодами обращения планеты существует следующее соотношение:
(4.1)
где Т = 1 год — 365,25 суток — период обращения Земли вокруг Солнца. В формуле (4.1) знак «+» применяется для Венеры и Меркурия, которые обращаются вокруг Солнца быстрее, чем Земля. Для других планет применяется знак «-».
Законы Кеплера
Иоганн Кеплер (рис. 4.3) определил, что Марс движется вокруг Солнца по эллипсу, а потом было доказано, что и другие планеты имеют эллиптические орбиты.
Рис. 4.3. И. Кеплер (1571—1630)
Первый закон Кеплера. Все планеты обращаются вокруг Солнца по эллипсам, а Солнце находится в одном из фокусов этих эллипсов(рис. 4.4, 4.5).
Рис. 4.4. Планеты обращаются вокруг Солнца по эллипсам. AF1=Fmin — в перигелии; BF1=Fmax — в афелии
Главное следствие из первого закона Кеплера: расстояние между планетой и Солнцем не остается постоянным и изменяется в пределах: rmax ≤ r ≥ rmin
Точка А орбиты, где планета приближается на наименьшее расстояние к Солнцу, называется перигелием (греч. peri — вблизи helios — Солнце), а самую отдаленную от центра Солнца точку В орбиты планеты назвали афелием (от греч. аро — вдали). Сумма расстояний в перигелии и афелии равна большой оси АВ эллипса: rmax + rmin = 2a. Большая полуось земной орбиты (ОА или ОВ) называется астрономической единицей. 1 а. е. = 149,6×10 6 км.
Земля в перигелии 3—4 января приближается к Солнцу на наименьшее расстояние 147 млн км Земля в афелии 3—4 июля удаляется от Солнца на самое большое расстояние 153 млн км |
Рис. 4.5. Как правильно нарисовать эллипс
Степень вытянутости эллипса характеризуется эксцентриситетом е — отношением расстояния между фокусами 2с к длине большой оси 2а, то есть e=c/a, 0 39 раз слабее, но только гравитация управляет движением планет, а также влияет на эволюцию Вселенной. Это можно объяснить тем, что электрические заряды имеют разный знак («+» и «-»), поэтому тела большой массы являются в основном нейтральными, и на большом расстоянии электромагнитное взаимодействие между ними довольно слабое.
Определение расстояний до планет
Для измерения расстояний до планет можно использовать третий закон Кеплера, но для этого надо определить расстояние от Земли до любой планеты. Предположим, что нужно измерить расстояние L от центра Земли О до светила S. За основу принимают радиус Земли R, и измеряют угол ∠ASO=p, так называемый горизонтальный параллакс светила, ибо одна сторона прямоугольного треугольника — катет AS, является горизонтом для точки А (рис. 4.11).
Рис. 4.11. Горизонтальный параллакс р светила определяет угол, под которым с этого светила был бы виден перпендикулярный к лучу зрения радиус Земли
Горизонтальный параллакс (от греч.— смещение) светила — это угол, под которым было бы видно перпендикулярный к лучу зрения радиус Земли, если бы сам наблюдатель находился на этом светиле. Из прямоугольного треугольника OAS определяем гипотенузу OS:
(4.4)
Правда, при определении параллакса возникает проблема: как астрономы могут измерить угол с поверхности Земли, не летая в космос? Чтобы определить горизонтальный параллакс светила S, нужно двум наблюдателям одновременно из точек А и В измерить небесные координаты (прямое восхождение и склонение) этого светила (см. § 2). Эти координаты, измеряемые одновременно из точек А и Б, будут немного отличаться. На основе этой разницы координат определяют величину горизонтального параллакса.
Чем дальше от Земли наблюдается светило, тем меньше значение параллакса. Например, самый большой горизонтальный параллакс имеет Луна, когда находится ближе всего к Земле: p = 1°01′. Горизонтальный параллакс планет гораздо меньше, и он не остается постоянным, поскольку расстояния между Землей и планетами меняются. Среди планет самый большой параллакс имеет Венера — 31″, а самый маленький 0,21″ — Нептун. Для сравнения: букву «О» в этой книге видно под углом 1″ с расстояния 100 м — такие крошечные углы астрономы вынуждены измерять для определения горизонтальных параллаксов тел в Солнечной системе. О том, как измерить расстояние до звезд, смотри в § 13.
Выводы
Все космические тела от планет до галактик движутся по закону всемирного тяготения, который был открыт Ньютоном. Законы Кеплера определяют форму орбиты, скорость движения планет Солнечной системы и их периоды обращения вокруг Солнца.
Тесты
- Как называется расположение планет в космическом пространстве относительно Земли и Солнца?
- А. Конфигурация.
Б. Противостояние. В. Космогония.
Г. Вознесение.
Д. Перемещение.
- А. Сатурн.
Б. Венера.
В. Меркурий.
Г. Юпитер.
- А. Сатурн.
Б. Венера.
В. Меркурий.
Г. Юпитер.
- А. Лев.
Б. Козерог.
В. Орион.
Г. Рыбы.
Д. Водолей.
- А. Перигелий.
Б. Перигей.
В. Апогей.
Г. Афелий.
Д. Апекс.
Диспуты на предложенные темы
- Как изменится климат Земли, если эксцентриситет земной орбиты будет равен 0,5, а большая полуось останется такой, как сейчас? Считать, что угол наклона оси обращения к плоскости эклиптики останется 66,5°.
Задания для наблюдений
- Определите при помощи астрономического календаря, какая планета Солнечной системы находится ближе всего к Земле в день вашего рождения в текущем году. В каком созвездии ее можно увидеть сегодня ночью?
Ключевые понятия и термины:
Афелий, элонгация, конфигурации планет, параллакс, перигелий, противостояние, сидерический и синодический период.
Источник