Большой взрыв и что было до него. Как происходил великий переход от Пустоты к Бытию
Поделиться:
Откуда взялась Вселенная? Кажется, что идея, будто все это получилось из ничего, противоречит логике и здравому смыслу. Возможно, когда-нибудь наука объяснит не только то, как мир устроен, но и почему он устро ен именно так. По крайней мере, именно на это надеется, например, Ричард Докинз, который ищет ответ в теоретической физике, полагаясь на инфляционное расширение в первые доли секунды после Большого взрыва и на принцип космического отбора Вселенных, похожего на принцип естественного отбора Дарвина.
В начале 20 века считалось, что наша Вселенная состоит только из галактики Млечный путь, которая плывет сама по себе в бесконечном пространстве. С тех пор ученые установили, что Млечный путь является всего лишь одной из сотен миллиардов галактик – и это только в видимой нам части Вселенной. В настоящее время считается, что сам Большой взрыв лучше всего объясняет теория, названная «новая инфляционная космология». Согласно этой теории, взрывы, создающие вселенные, подобно Большому взрыву, случаются довольно часто. Инфляционная космология полагает, что наша Вселенная (которая возникла 14 миллиардов лет назад) появилась из пространства-времени уже существовавшей Вселенной и не является единственной физической реальностью, а представляет собой лишь невообразимо крохотную часть Мультивселенной. Хотя каждый из миров внутри Мультиверсума имеет определенное начало во времени, вся самовоспроизводящаяся структура в целом может быть вечной – таким образом, мы вновь будто возвращаемся к концепции статичной Вселенной, которая казалась навсегда отброшенной с открытием Большого взрыва.
Пока считалось, что Вселенная вечна, ее существование не слишком заботило ученых. Эйнштейн в своих гипотезах просто принял, что Вселенная вечна, и даже подправил уравнения теории относительности соответствующим образом. Однако с открытием Большого взрыва все изменилось. Эксперименты показывают, что мы живем в расширяющихся и охлаждающихся остатках космического комка, который взорвался около 14 миллиардов лет назад. Что могло вызвать этот первоначальный взрыв? И что ему предшествовало – и предшествовало ли что-нибудь вообще? Эти вопросы определенно входят в компетенцию науки, но любая попытка науки на них ответить натыкается на кажущееся непреодолимым препятствие, известное как «сингулярность».
Предположение, что Вселенная расширяется (вопреки прежней статичной модели) подтверждено в 1929 году астрономом Эдвином Хабблом на основании наблюдений за спектром звезд. Окончательным подтверждением инфляции Вселенной стало обнаруженное в 1965 году реликтовое излучение, которое осталось со времен Большого взрыва. Два исследователя из «Белл телефон лабораторис» случайно обнаружили вездесущее микроволновое излучение. Поначалу ученые подумали, что причиной постоянного шипения в микроволновом диапазоне является деятельность голубей. Если включить телевизор и настроиться между станциями на пустой канал, то примерно 10 процентов черно-белых крапинок на экране вызывается фотонами, которые остались с момента рождения Вселенной. Наглядней доказательство реальности Большого взрыва невозможно придумать – вы можете увидеть остывающие остатки Большого взрыва в собственном телевизоре.
В 1970 году Стивен Хокинг и Роджер Пенроуз показали, что эти попытки не могут увенчаться успехом. Хокинг и Пенроуз начали со вполне логичного предположения о том, что гравитация всегда притягивает, и приняли плотность материи во Вселенной примерно равной измеренной экспериментально. На основе этих двух допущений они с математической точностью доказали, что в начале Вселенной все-таки должна быть сингулярность.
Означает ли это, что тайна происхождения Вселенной останется навсегда неразгаданной? Не совсем так, скорее расчеты Хокинга и Пенроуза показывают, что Большой взрыв не может быть полностью понят «классической» космологией вроде теории относительности Эйнштейна, потребуются и другие теории.
Если проследить историю расширяющейся Вселенной вспять, Вселенная будет уменьшаться, пока в момент Большого взрыва не обратится в сингулярность. Здесь теория Эйнштейна прерывается и не может предсказать начало Вселенной и начало времени — только то, как она развивалась позже. В этой точке действуют исключительно законы квантовой механики: размытые по пространству волны-частицы движутся всеми возможными путями, и Вселенная может иметь бесконечное множество предысторий. Концептуальный тупик на Большом взрыве беспокоил космологов, и они стали искать сценарии, позволяющие избежать первоначальной сингулярности.
По словам Хокинга, одно из следствий теории квантовой механики заключается в том, что события, произошедшие в прошлом, не происходили каким-то определённым образом. Вместо этого они могли происходить всеми возможными способами. Это связано с вероятностным характером вещества и энергии согласно квантовой механике: до тех пор, пока не найдётся сторонний наблюдатель, материя будет находиться в неопределённости. Стивен Хокинг пишет: «Независимо от того, какие воспоминания вы храните о прошлом в настоящее время, прошлое, как и будущее, неопределённо и существует в виде спектра возможностей».
Тем не менее остается вопрос: почему же существуют вся эта материя и энергия? Почему пространство-время нашей Вселенной обладает определенной геометрической формой и имеет конечный возраст? Почему оно насыщено разнообразными физическими полями, частицами и силами? И почему эти поля, частицы и силы подчиняются определенному набору законов – причем довольно запутанному? Разве не проще было бы, если бы не было вообще ничего?
Для бесконечного во времени мира (неважно, соответствует ли он инфляционной или другой теории) не существует необъяснимого «момента творения», в нем нет места «первопричине», нет произвольных начальных условий. Поэтому кажется, что вечный мир удовлетворяет принципу достаточной причины: его состояние в любой момент времени можно объяснить его состоянием в предыдущий момент.
Так если в момент Большого взрыва не было никакого перехода от Ничто к Нечто, то нет надобности искать причину, божественную или какую-то иную, которая вызвала к жизни Вселенную? И также нет необходимости ломать голову над поставленным нами вопросом «Откуда взялись материя и энергия во Вселенной?»: внезапного и фантастического нарушения закона сохранения энергии-массы во время Большого взрыва не было. А Вселенная всегда обладала одинаковой энергией-массой, от нулевого момента и до настоящего времени.
В каком экстремуме квантовые законы и, как следствие, исчезновение измерения времени могут проявиться на уровне Вселенной? Очевидно, когда вселенная сравнима размерами с атомным ядром. Именно это подразумевает теория Большого взрыва: все начинается с сингулярности — точки, в которой температура, плотность и искривление Вселенной были бесконечны. Из этой точки Вселенная начинает расширяться, и расширение (в соответствии с инфляционной моделью) продолжается до сих пор. Обратив вспять расширение, мы увидим, как содержимое Вселенной сближается, все более сжимаясь в одну точку. В конце концов, в самом начале космической истории, весь мир находится в состоянии бесконечного сжатия и стянут в «сингулярность». Общая теория относительности Эйнштейна утверждает, что форма пространства-времени определяется распределением энергии и материи. И когда энергия и материя бесконечно сжаты, то и само пространство-время тоже сжато – и оно просто исчезает.
Как именно, можно понять, если учесть, что через долю секунды после рождения вся наблюдаемая Вселенная была не больше атома. В таких масштабах классическая физика неприменима: в микромире правят законы квантовой теории. Поэтому космологи (среди них и Стивен Хокинг) стали задаваться вопросом: «А что, если квантовую теорию, которая использовалась только для описания субатомных явлений, применить ко всей Вселенной в целом?». Так родилась инфляционнаяквантовая космология, названная физиком Джоном Гриббином «наиболее значительным шагом вперед в науке со времен Исаака Ньютона»[1].
Квантовая космология предлагает способ обойти проблему сингулярности. Классические космологи полагали, что сингулярность, притаившаяся за Большим взрывом – это что-то вроде точки с нулевым объемом. Однако квантовая теория запрещает столь точно определенное состояние, утверждая, что на самом фундаментальном уровне природа обладает неизбежной размытостью, поэтому невозможно указать точный момент возникновения Вселенной, ее начальное время.
То, что квантовая теория разрешает, еще более интересно, чем то, что она запрещает. А разрешает она спонтанное возникновение частиц из вакуума. Такой способ создания Нечто из Ничто дал квантовым космологам плодотворную идею: что, если сама Вселенная, по законам квантовой механики, возникла из случайной флуктуации? Тогда причина того, что существует Нечто, а не Ничто, состоит в неустойчивости вакуума.
Утверждение физиков «вакуум неустойчив» подчас подвергается нападкам философов. Но физический вакуум и полная пустота является названием разных объектов. Однако о пустоте можно думать не только как об объекте, но и как об описании определенного состояния. Для физика «пустота» описывает такое состояние, когда нет частиц и все математические поля равны нулю. Возможно ли такое состояние в действительности? То есть согласуется ли оно логически с наблюдаемыми физическими реалиями? Возможно ли создать в наполненной Вселенной полную пустоту?
Одним из наиболее глубоких принципов, лежащих в самой основе нашего квантового понимания природы, является принцип неопределенности Гейзенберга, утверждающий, что определенные пары свойств связаны друг с другом таким образом, что не могут быть точно измерены вместе. Одна такая пара переменных – координаты и импульс частицы: чем точнее вы установили положение частицы, тем менее точно вам известно значение ее импульса, и наоборот. Другой парой сопряженных переменных являются время и энергия: чем точнее вам известен промежуток времени, в течение которого произошло какое-то событие, тем меньше вы знаете об энергии, связанной с этим событием, и наоборот.
Квантовая неопределенность запрещает точное определение значений поля и скорости изменения этого значения. Пустота, или вакуум – это состояние, в котором все значения полей постоянно равны нулю, однако принцип неопределенности Гейзенберга говорит, что если мы точно знаем значение поля, то скорость его изменения совершенно случайна, то есть не может быть равна нулю. Таким образом, математическое описание неизменной пустоты несовместимо с квантовой механикой – точнее, пустота неустойчива, или же чистой пустоты попросту не существует.
Идея, что Вселенная, содержащая сотни миллиардов галактик, могла появиться из пустоты, выглядит невероятной. Как показал Эйнштейн, любая масса представляет собой застывшую энергию. Однако огромному количеству положительной энергии, запертой в звездах и галактиках, должна противостоять отрицательная энергия гравитационного притяжения между ними. В «закрытой» Вселенной (той, которая со временем снова сожмется) положительная и отрицательная энергии должны точно уравновешивать друг друга. Другими словами, общая энергия такой Вселенной равна нулю.
Возможность создания целой Вселенной из нулевой энергии поражает воображение. С точки зрения квантовой механики Вселенная с нулевой энергией представляет собой интересную возможность. Допустим, что полная энергия Вселенной точно равна нулю. Тогда, благодаря взаимосвязи в неопределенности между энергией и временем (как утверждает принцип Гейзенберга), неопределенность во времени становится бесконечной. Другими словами, как только такая Вселенная возникнет из пустоты, то сможет существовать вечно. Что же касается причины, по которой Вселенная возникла, то это просто квантовая вероятность. Стивен Хокинг в книге «Великий замысел» пишет: «Если полная энергия Вселенной должна всегда оставаться нулевой, и необходимо затратить энергию, чтобы создать тело, как может вся Вселенная быть создана из ничего? Вот почему должен существовать такой закон, как гравитация. Так как гравитация притягивает, то энергия гравитации является отрицательной. Необходимо произвести работу, чтобы разделить гравитационно связанную систему, такую как Земля и Луна. Эта отрицательная энергия может быть сбалансирована положительной энергией, необходимой чтобы создать материю, но все не так просто. Отрицательная гравитационная энергия земли, к примеру, меньше, чем положительная энергия миллиардов частиц, из которых она состоит. Тело, такое как звезда, будет иметь больше отрицательной гравитационной энергии, и чем меньше она (частицы, из которых она состоит, находятся ближе друг к другу), тем больше будет ее отрицательная гравитационная энергия. Но прежде, чем отрицательной гравитационной энергии может стать больше положительной энергии вещества, звезда сколлапсирует в черную дыру, и черная дыра будет иметь положительную энергию. Вот почему пустое пространство стабильно. Тела, такие как звезды или черные дыры, не могут так просто появляться из ничего. Но целая Вселенная может!»[2]
С выводами Стивена Хокинга согласна и квантовая механика. Американский ученый русского происхождения Алекс Виленкин в книге «Мир многих миров» показал, что из начального состояния пустоты может спонтанно появиться крохотный кусочек наполненного энергией вакуума. Под действием отрицательного давления «инфляции» этот кусочек энергетического вакуума испытает безудержное расширение. Через пару микросекунд он достигнет космических размеров, испустив поток света и материи, создав Большой взрыв.
Таким образом, по мнению Виленкина, переход от Пустоты к Бытию происходит в два этапа. На первом крохотный кусочек вакуума появляется из вакуума. На втором он раздувается в наполненную материей предшественницу той Вселенной, которую мы сейчас видим вокруг. На данный момент принципы квантовой механики, управляющие первым этапом, являются самыми надежными принципами в науке. Что касается теории инфляции, которая описывает второй этап, то с момента своего создания в начале 80-х годов она успешно подтверждена не только теоретически, но и эмпирически – в частности, распределением реликтового излучения, оставшегося после Большого взрыва.
Что же происходит в момент Большого взрыва со временем? Общая теория относительности объединяется с квантовой теорией: искривление времени-пространства настолько велико, что все четыре измерения ведут себя одинаково. Иными словами, времени как особого параметра нет. А если времени нет, то нет и возможности говорить о начале Вселенной во времени, что устраняет проблему творения из Ничего.
Таким образом, сингулярность в начале Вселенной является не событием во времени, а скорее временной границей или краем. До нее никакого времени не было. Поэтому не было и времени, когда преобладало Ничто. И не было никакого «возникновения» – по крайней мере, во времени. Вселенная имеет конечный возраст, хоть и существовала всегда, если под «всегда» подразумевать все моменты времени. Вековой парадокс разрешается.
[1]Gribbin J . Q Is for Quantum. Free Press, 1998.
[2] Stephen Hawking and Leonard Mlodinow «The Grand Design»
Источник
Теория Большого взрыва: история эволюции нашей Вселенной
Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.
Вначале был взрыв.
Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.
Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.
Хронология событий в теории Большого Взрыва
Так все выглядело в разрезе времени.
Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.
Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.
Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10 -43 до 10 -11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.
Тайны сингулярности
Сингулярность мало кто может объяснить человеческим языком.
Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.
Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.
Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.
В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).
Эпоха инфляции
Можно попробовать визуализировать Вселенную так.
С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.
В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.
Охлаждение Вселенной
После взрыва все должно было снизить температуру.
Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.
Например, ученые считают, что на 10 -11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10 -6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.
Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.
В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.
Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.
С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.
Структурирование Вселенной
Вот что произошло за 14 миллиардов лет.
В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.
Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.
Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.
Что будет со Вселенной
Будущее знать нельзя, но можно предсказать.
Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?
Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.
Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.
Большой взрыв — в таком виде
Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.
Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.
Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.
История теории Большого взрыва
А вы бы смогли рассказать все это в эфире ВВС?
Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.
В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.
В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.
В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).
Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.
Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.
После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.
Космос настолько загадочен, что мы не сможем понять даже малую его часть.
В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.
В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.
Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.
Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.
Источник