Меню

Сколько лет свету солнца который мы видим

Скорость света конечна. И мы всегда видим прошлое

Как Вы наверное знаете, скорость света составляет 300 000 километров в секунду. Это в вакууме. В других средах он движется медленнее. Например через алмаз он движется в два с половиной раза медленнее. Так что свету, отраженному от всего, что нас окружает, требуется время, чтобы достичь наших глаз. Например для того, чтобы вы увидели этот текст, свету нужно преодолеть около 50 сантиметров. Это занимает 1,6 наносекунды. Или около одной миллиардной доли секунды. Таким образом, можно сказать, что это происходит почти мгновенно.

В нашей повседневной жизни все вокруг нас движется в таком вот наносекундном масштабе. Знаки на улицах, люди, которых мы видим, машины, которые мы видим в начале улицы… Во всех этих случаях нам нужен свет, чтобы мы могли видеть все это глазами. Таким образом, всегда существует небольшая задержка между реальным положением объекта и тем, что мы наблюдаем.

Например, свет от самолета, летящего на высоте 10 километров, путешествует до нас около 30 микросекунд. Международная космическая станция, высота орбиты которой около 400 км. находится не совсем там, где мы ее можем увидеть ночью.

Чем дальше, тем дольше

За пределами Земли есть планеты Солнечной системы. Из них Венера является ближайшей к нам. Свет от нее в среднем преодолевает около 42 миллионов километров. На этом расстоянии свет Венеры летит к нам 2 минуты и 20 секунд. Это время, необходимое для разогрева тарелки с едой в микроволновой печи. Марс, безусловно, один из самых интересных случаев. Но, как Вы уже поняли, эта тема ясна. Чем дальше объект, который мы видим, тем больше времени нужно свету, чтобы добраться до нас. Когда Вы видите Луну в небе, Вы на самом деле видите ее такой, какой она была чуть более секунды назад.

По причине задержки сигналов мы программируем свои автоматические зонды, которые отправляем в космос, заранее определенными алгоритмами посадки. Потому что это невозможно сделать в реальном времени.

Солнце всегда в прошлом

Как вы уже догадались, когда мы видим свет Солнца, на самом деле мы видим его в прошлом. Через 8 минут 18 секунд после того, как он покинул наше светило.

Это имеет положительное и отрицательное значение. Это как посмотреть. Если Солнце вдруг перестанет светить, еще целых 8 минут об этом никто не узнаете. Что же здесь хорошего, спросите Вы? Положительным моментом является то, что у нас будет еще 8 минут счастливого неведения, прежде чем мы поймем, что что-то произошло. Что-то в этом есть, правда?

Галактические расстояния

Самая близкая галактика к Млечному Пути (не считая спутниковых галактик) — Андромеда. Расстояние до нее 2,5 миллиона световых лет. Таким образом свет, который мы видим сегодня (кстати, это самый дальний объект, который мы можем увидеть невооруженным глазом), родился в звездах тогда, когда наши предки начали использовать первые простые инструменты.

Но мы можем пойти еще дальше. Галактика Мессье 100 находится на расстоянии около 55 миллионов световых лет от нас. Поэтому ее свет родился через 10 миллионов лет после исчезновения динозавров. Самая дальняя галактика, которую мы наблюдали во Вселенной, — это GN-z11. Она расположена в созвездии Большой Медведицы. Ее свет появился через 400 миллионов лет после Большого взрыва (13,4 миллиарда лет назад).

Из-за расширения Вселенной она находится на расстоянии 32 000 миллионов световых лет от Земли. Свет, который мы получили от этой галактики, улетел оттуда задолго до того, как появилась наша планета и наша Солнечная система. Тогда не существовало даже Млечного Пути!

Можно ли увидеть наcтоящее?

Поэтому, из-за того что свет имеет конечную скорость, мы можем видеть вещи только такими, какими они были в прошлом. Вы можете задаться вопросом — а есть ли способ увидеть что-то в настоящем, не дожидаясь, пока свет достигнет нас? Ответ — да … Просто нужно стать самим светом. Потому что если у вас есть масса, пусть маленькая, Вы никогда не достигнете 100% скорости света.

Читайте также:  Лучшие головные уборы от солнца

С точки зрения фотона, движущегося со скоростью света, расстояние и время не существуют вообще. Для него все происходит мгновенно. И поэтому он может путешествовать куда угодно, в любое время года, за ноль секунд. По сути, вся Вселенная для фотона является точкой. Конечно, это звучит довольно странно, но теория относительности позволяет такие штуки. Потому что объект, который движется со скоростью света, испытывает бесконечное расширение времени и бесконечное сжатие пространства.

Источник

За какое всё-таки время свет достигает Земли от центра Солнца (с анимацией)

Примечание: анимация в конце статьи. Там всё понятно.

В Космосе видимый свет движется с постоянной скоростью 300 000 км/с. Значит на преодоление расстояния от поверхности Солнца до Земли фотонам потребуется всего лишь 8 минут 20 секунд. Казалось бы, немного. Только этим фотонам нужно еще добраться до поверхности звезды, так как рождаются они в самих недрах светила.

В ядре Солнца происходит непрерывная термоядерная реакция в результате синтеза атомов водорода с образованием атомов гелия и выделением энергии в виде фотонов.

Само ядро представляет собой термоядерный реактор, радиус которого равен 170 тысячам километров. А это четверть радиуса Солнца. Образовавшиеся в ядре фотоны изначально обладают высокой энергией в диапазоне гамма-излучения.

Покидая реактор, фотоны попадают сначала в зону лучистого переноса, а затем в конвективную зону Солнца. Но, чтобы достигнуть поверхности звезды, фотонам приходится сталкиваться с препятствиями.

В Солнце громадное количество нуклонов (протонов и нейтронов). Фотон, подобно пуле, ударяясь о нуклоны, мгновенно рикошетит, меняя свое направление. Тем самым фотоны, рождаясь, непроизвольно становятся участниками игры в «Пинбол».

При этом, при соударении фотоны отдают часть свой энергии частицам, из-за чего волна фотона постепенно удлиняется. Так фотоны со временем переходят в рентгеновское излучение, затем в ультрафиолет, а после, в видимое излучение или свет.

Сколько раз фотоны будут налетать на частицы, прежде чем наконец-то выберутся из солнечной ловушки?

Здесь возникает проблема Случайного блуждания . Ответ можно найти в самой формуле Случайного блуждания, где расстояние равно произведению длины шага на квадратный корень суммарного количества шагов.

Пример, представим, что слепой Петя решит самостоятельно добраться от дома до магазина, который полностью окружает дом на расстоянии 1 км. Длина шага равна 1 метру. Петя будет двигаться со скоростью 1 м/с. Из формулы Случайного блуждания получится, что Петя доберётся до магазина только через 11 дней, сделав миллион шагов.

Теперь возвращаемся в лабиринт светила. Нам известна масса Солнца. Значит мы можем определить примерное количество нуклонов. Химический состав светила: 75% водорода и 25% гелия. То есть приблизительным подсчётом, в Солнце содержится 1.2 * 10 в 57 степени нуклонов.

Если теоретически нуклоны равномерно распределить внутри звезды, то расстояние между ними или шаг составит 1 ангстрем (0.1 нанометра). Радиус Солнца равен 695 000 км. Из формулы Случайного блуждания получится, что фотон столкнётся с частицами 48 302 дециллиона раз.

Сколько времени понадобится фотону, чтобы выбраться из солнечного лабиринта?

Благодаря современному компьютерному моделированию точное время постепенно уточняется. В настоящее время компьютером подсчитано, что фотону потребуется 170 000 лет, чтобы проделать путь от недр Солнца до его поверхности. И только после этого, сквозь космическое пространство, он долетает до человеческой сетчатки глаза, через 8 минут 20 секунд.

Получается, что солнечный свет, который мы видим сегодня, прошёл весь путь ещё с того времени, когда появился только первый современный человек.

Источник

Какой возраст у солнечного света, который мы видим?

Некоторые из вас сразу дадут ответ: «для того, чтобы свет от Солнца достиг Земли, требуется около 8 минут». Все правильно, но вот для того, чтобы свету выйти изнутри Солнца и достичь его внешнего края нужно…

Вот сейчас и узнаем сколько на это нужно лет.

Дело в том, что фотоны, частицы света, не идут напрямую от ядра Солнца наружу. Центральная часть Солнца с радиусом примерно 150—175 тыс. км (то есть 20—25 % от радиуса Солнца), в которой идут термоядерные реакции, называется солнечным ядром. В ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности. Там же осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в излучение превращаются 4,26 млн тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца.

Читайте также:  Цитатный план для кладовая солнца

Выходя из ядра, они попадают в зону лучистого переноса, где перенос энергии осуществляется путём поглощения и повторного излучения фотонов. Причём поглощение-излучение фотонов никак не зависит от того, в какую сторону они направлялись, из-за этого многократно переизлучённому фотону требуется масса времени, чтобы вырваться, наконец, наружу. Это путешествие может занимать миллионы лет. В среднем этот срок составляет для Солнца 170 тыс. лет

Ближе к поверхности Солнца температуры и плотности вещества уже недостаточно для полного переноса энергии путём переизлучения. Возникает вихревое перемешивание плазмы, и перенос энергии к поверхности (фотосфере) совершается преимущественно движениями самого вещества.

Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоёв до нас уже не доходит.

Вот как то мы задавались вопросом Можно ли сдвинуть солнце и Когда солнце взорвется. А оказывается у нас можно увидеть Три солнца и как Сквозь Солнце пролетает огромный НЛО

Источник

Когда мы смотрим на небо, можно ли считать, что мы смотрим в прошлое, касательно света звёзд?

Формально, все что мы видим вокруг — уже прошлое (в силу конечности скорости света). Даже свет от фонаря приходит к нам быстро, но все же не моментально.

Например, свет от Солнца идет к нам 8 минут. Поэтому Солнце мы тоже видим в прошлом.

Важно понимать, что световые минуты/часы/дни/годы — это единицы измерения расстояния, а не времени.

8 световых минут — это почти 150 миллионов километров.

А один световой год — это почти 10 триллионов километров — расстояние, которое свет проходит за 1 год.

Свет от других звезд идет гораздо дольше, так как они находятся гораздо дальше. Все звезды, которые мы видим на небе невооруженным глазом — звезды нашей Галактики. Поэтому даже если мы сможем видеть самые далекие звезды Млечного Пути, расстояние до них не будет превышать 110 тысяч световых лет (это размер нашей Галактики по современным оценкам)

Ближайшая к солнечной системе звезда — Проксима Центавра — находится на расстоянии чуть больше четырех световых лет от нас. То есть мы сегодня видим свет, который был испущен ей 4 года назад.

А вот свет от Бетельгейзе (красная звезда в Орионе) — добирается к нам больше 600 лет. То есть в обоих случаях, глядя на эти звезды, мы видим прошлое. Но в случае с Бетельгейзе — более далекое.

Самый далекий объект, который человек видит невооруженным глазом — это галактика в созвездии Андромеды. При идеальных условиях наблюдения это тусклое пятнышко хорошо различимо зимой и с европейской части России тоже! Глядя на него, вы поймаете глазом фотон, испущенный больше, чем 2.5 миллиона лет назад.

Источник

Сколько тысяч лет солнечный свет добирается до Земли?

Мы привыкли считать, что для того, чтобы увидеть что-то по-настоящему древнее, нужно ехать в палеонтологический музей. Но это ошибка! Просто выйдите на балкон и подставьте лицо солнцу. Солнечному лучу, коснувшемуся кончика вашего носа, ни много ни мало – 100 тысяч лет.

«Стоп! – скажете вы. – Какие сто тысяч лет? Ведь свет идёт от Солнца до Земли восемь минут!» Ну да, восемь минут – от поверхности Солнца. Но зарождается-то он не на поверхности.

Сразу сделаем оговорку. Ещё никто в недрах Солнца не был, и все наши познания о том, что происходит в недрах светила, опираются исключительно на математические расчёты, в крайнем случае – на компьютерные модели. Поэтому цифры, которые мы будем приводить в дальнейшем, в известной степени условны. Однако они неплохо подтверждаются многочисленными наблюдениями и экспериментами, и потому считаются вполне достоверными.

Читайте также:  Растения используют энергию солнца для фиксации атмосферного азота

Итак, солнечный свет состоит из фотонов. Фотон – это квант (неделимая частица) электромагнитного излучения. Фотоны, которые мы видим и ощущаем в виде света и тепла, рождаются глубоко внутри солнечного ядра в результате постоянно идущих там многоступенчатых термоядерных реакций. Под воздействием огромного давления и температуры два ядра водорода «сливаются», в результате чего в итоге образуется ядро гелия, мелкие частицы (позитроны и нейтрино) и очень много энергии в виде тех самых фотонов (гамма-квантов). Каждую секунду в ядре Солнца «сжигается» 600 миллионов тонн водорода, вот откуда берётся его энергия!

Фотоны движутся со скоростью света. Поэтому сперва кажется, что фотон должен очень быстро «вылететь» из ядра Солнца в космос. Но дело в том, что вещество в ядре имеет чудовищную плотность, атомы вещества «упакованы» там невероятно тесно. Поэтому, не пролетев даже нескольких миллиметров, фотон сталкивается с атомом, поглощается им, а затем снова «переизлучается», но уже с более низкой энергией. И этот цикл повторяется невероятно большое количество раз!

Чтобы понять этот механизм «переизлучения», представьте себе длинный вагон метро или автобуса, до отказа набитый людьми. Не протолкнуться! А нам нужно из одного конца вагона в другой передать шоколадный торт. И вот мы протягиваем торт ближайшему пассажиру с просьбой – «Передайте, пожалуйста, дальше!». Он передаёт соседу, тот – ещё кому-нибудь. И при этом каждый пассажир тайком откусывает от торта ма-а-аленький кусочек. В итоге торт доберётся до другого конца вагона – но много ли от него останется?

Точно так же и фотон – очень медленно «перепрыгивая» от одного атома к другому, он постепенно теряет энергию.

Та часть Солнца, в которой происходит подобное явление, красиво называется «зоной лучистого переноса» или просто «лучистой зоной». Однако не подумайте, что внутри «лучистой зоны» невероятно светло – нет, если бы мы смогли оказаться там, то увидели бы нечто невероятно плотное, чудовищно горячее и. угольно-чёрное. Квантов видимого света в лучистой зоне практически нет! Путешествие фотона внутри лучистой зоны, по разным оценкам, может занимать от 80 тысяч до 1 миллиона (!) лет.

Однако плотность и температура вещества при движении от центра к поверхности Солнца постепенно падают, энергия фотона становится всё меньше – и наконец «лучистая зона» заканчивается. Начинается «зона конвекции».

Вспомните, как внутри стоящей на плите кастрюли горячая вода поднимается кверху, а остывшая опускается вниз, на дно. А ещё при этом образуются пузыри – вода кипит. Примерно то же самое происходит внутри Солнца – горячий газ движется от лучистой зоны к поверхности, перенося энергию вместе с собой. В зоне конвекции кванты энергии как бы «путешествуют» внутри атомов. Наконец, атом газа испускает энергию наружу, а сам «остывает». Остывший газ снова опускается от поверхности к лучистой зоне. При этом образуются огромной величины «пузыри» – супергранулы. Каждый такой «пузырёк» примерно в 3 раза больше нашей Земли! Ближе к поверхности супергранулы разбиваются на более мелкие «пузырьки» раскалённого газа – гранулы.

Потерявший огромное количество энергии фотон превращается в квант видимого нами света и в конце концов достигает так называемой фотосферы, то есть видимой поверхности Солнца. Здесь фотону уже ничто не мешает, наконец, вылететь в открытый космос и отправиться к Земле с той самой скоростью света. Оставшийся путь в 150 миллионов километров он проходит всего лишь за 8 минут!

Так что тот самый фотон, «кусочек» солнечного лучика, который в данный момент попал вам на кончик носа, родился в незапамятные времена, сто или даже двести тысяч лет назад, когда на Земле был ледниковый период, бродили мамонты, саблезубые тигры, шерстистые носороги и другие удивительные животные. Здорово, правда?

Источник

Adblock
detector