Какой самый быстрый объект после света? Фото и видео
Еще в школе учат, что свет является самым быстрым в природе и способен преодолевать огромные расстояния за несколько секунд. Но какой объект считается самым скоростным после света?
Скорость света
Несмотря на то, что свет считается неосязаемым объектом, он состоит вполне из реальных частиц – фотонов, обладающих нулевой массой в состоянии покоя. Находясь в вакууме, они перемещаются в пространстве со скоростью 299 792 458 м/с, что на данный момент считается самым быстрым показателем скорости.
Быстрота света активно используется людьми в быту, начиная с банального обогрева солнечными лучами и заканчивая передачей сигналов и информации.
Самый быстрый объект после света
Учитывая высокую скорость света, может показаться, что во вселенной не существует вещей, способных двигаться хотя бы наполовину медленнее. Так и считалось долгое время, пока 15 октября 1991 года американские ученые не сделали удивительное открытие.
В атмосфере Земли с помощью специального детектора “Fly’s Eye” были зарегистрированы протоны, обладающие огромным импульсом. Несмотря на микроскопический размер, частицы обладали энергией теннисного мячика, летящего со скоростью 150 км/ч. Это позволяло им разгоняться до скорости, практически полностью совпадающей со световой. Их назвали OMG-particle (протоны “О боже мой”).
OMG-particle
Ученым удалось установить, что за 215 000 лет OMG проходит расстояние, всего лишь на сантиметр меньшее пути, которое преодолевает свет, а его скорость равна 99,99999999999999999999951% от световой. Таким образом, “О боже мой” считаются вторыми по скорости объектами во вселенной. На текущий момент подобных частиц зарегистрировано около сотни.
Ученые начали сравнивать свойства OMG с поведением частиц, разгоняемых в адронном коллайдере. Оказалось, что во время взаимодействия с атмосферой Земли протоны потратили большое количество кинетической энергии, и величина последней оказалась в 50 раз больше аналогичной, выделяемой при столкновении частиц в ускорителе.
Скорость частиц в адронном коллайдере
После того, как в 2000-ом свою работу прекратил большой электрон-позитронный коллайдер, было принято решение построить усовершенствованную модель. Еще во второй половине 80-х ученые создавали различные наработки и чертежи, которые начали реализовываться в 2001-ом году.
В эксплуатацию адронный коллайдер был запущен в 2008 году, но спустя пару недель один из его контактов расплавился и спровоцировал аварию. Из-за этого работу пришлось остановить до середины 2009 года. Приведя установку в порядок, работники и ученые возобновили эксперименты. Основной их деятельностью было столкновение различных частиц на больших скоростях и изучение полученных продуктов в ходе реакции.
Одним из наиболее значимых открытий, сделанных с помощью установки, является обнаружение элементарной частицы – бозона Хиггса, существование которой предсказывал ученый еще в 1964 году.
И если в первое время после аварии ученые не осмеливались использовать всю мощность коллайдера, то постепенно они начали разгонять частицы все быстрее. Конструкция устройства представляет собой замкнутый тоннель, длина окружности которого составляет 26 659 м. Частица двигается по кругу с определенной скоростью, и максимальное значение данной величины было получено при запуске протонов с энергией 7 ТэВ: их скорость лишь на 3 м/c медленнее световой. Это значит, что за секунду частица делает полный круг примерно 10 тысяч раз. В теории, такие протоны можно считать третьими по скорости объектами во вселенной.
Самым быстрым объектом после света является протон OMG, двигающийся примерно с такой же скоростью. За 215 000 лет OMG проходит лишь на 1 см меньше, чем частица света.
Самые быстрые объекты – интересное видео
Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Источник
Кто быстрее: скорость разных объектов во Вселенной
Пройдёмся по порядку, начиная с нас 🙂
Homo sapiens
Человека всегда манила скорость. 26 мая 1969 года человеку удалось достичь скорости 11, 08 км/с – это был рекорд, который пока никто не побил из людей, и установили его астронавты космического корабля «Аполлон-10» во время возвращения после испытательного полёта на Луну на высоте 121,9 км над уровнем моря. Входившие в состав экипажа Юджин Сернан, Томас Стаффорд и Джон Янг благополучно вернулись на Землю.
Самым быстрым рукотворным объектом в истории человечества является знаменитый «Вояджер-1», на данный момент скорость которого около 17, 26 км/с. Но во Вселенной есть такие объекты, скорость которых значительно превышает наши достижения.
Земля
Наша планета движется со скоростью ок. 30 км/с по своей орбите. Почему мы ничего не чувствуем? Ведь даже если мы просто лежим на диване, то стремительно движемся вперёд вместе с Землёй по орбите! Всё дело в том, что для нас Земля движется почти по прямой – слишком уж плавное искривление у такой длинной орбиты. Курс движения меняется всего на 1 градус в сутки, а что это по сравнению с размером всей планеты?
Меркурий
Не просто так ближайшую к Солнцу планету назвали в честь быстроного римского бога торговли. Скорость движения по орбите этого солнечного соседа составляет 48 км/с.
Галактики
Несмотря на свои огромные размеры, галактики движутся по Вселенной очень быстро: например, наш Млечный Путь, диаметр которого около 100 000 световых лет, мчится со скоростью примерно равной 120 км/с, и с такой же скоростью навстречу ему спешит наша соседка – Андромеда, которая в два раза больше Млечного Пути. Движение галактик в космосе связано с постоянным расширением Вселенной, которое, кстати, и было обнаружено именно в ходе наблюдений за этим «бегством» галактик Эдвином Хабблом.
Солнце
Любимое Солнце, без которого невозможна жизнь на Земле, тоже не «висит» на месте: оно, находясь в галактическом рукаве Ориона, движется вокруг центра Млечного Пути по своей орбите, увлекая за собой всю свою планетарную систему со скоростью около 220 км/с – именно так быстро мы вместе с остальными другими планетами движемся сквозь Вселенную. 200 миллионов лет – за такой промежуток времени Солнце пройдёт один оборот вокруг центра галактики – этот долгий путь равен примерно 170 000 световых лет.
Сверхбыстрые звёзды
Солнце – далеко не самая быстрая звезда. Есть звёзды намного быстрее Солнца и движутся они со скоростью 700-800 км/с и даже больше, а их происхождение точно не известно науке. В 1988 году астроном Джек Хиллс предположил, что две гравитационно связанные друг с другом звезды, обращающиеся на бинарной орбите, если окажутся рядом с чёрной дырой, то этот вселенский монстр, гравитация которого сильнее намного этой межзвёздной связи, разорвёт её, и одну звезду «утащит на обед» чёрная дыра, а другая спасётся – она будет выброшена на огромной скорости (это напоминает удар по мячу).
Например, в созвездии Золотая Рыба есть такая звезда — HE 0437-5439, она движется с примерной скоростью в 723 км/с . Группа астрономов под руководством Уоррена Брауна из Гарвард-Смитсоновского центра астрофизики рассчитала смещение звезды за 3,5 года наблюдений с помощью камеры телескопа «Хаббл» и восстановила возможный сценарий возникновения необычного астрономического объекта. Учёные считают, что в этом случае пострадала целая звёздная семья, состоящая из трёх звёзд. На свою беду эта тройная звёздная система подошла слишком близко к сверхмассивной чёрной дыре, проживающей в центре Млечного Пути, имя которой – Стрелец А*. Одна звезда в результате этого опасного путешествия оказалась «съеденной» чёрной дырой, а оставшаяся пара получила мощный «космический пинок» в виде колоссального импульса. Пара слилась воедино, образовав собой новую звезду. В настоящий момент эта звезда удаляется от центра Млечного Пути и уже находится в 200 000 световых лет от него в межгалактическом пространстве. Таким образом, эта звезда стала одинокой сиротой-странницей, и мчаться со своей невообразимой скоростью она будет до тех пор, пока не исчерпает запас своего ядерного топлива и не погибнет. Подобных сверхскоростных звёзд не так уж и много, например, в Млечном Пути может быть около 1000 таких сверхбыстрых одиночек (это если учесть, что общее количество звёзд в Млечном Пути около 250 млрд!).
Протон
В 1912 году австрийский физик Виктор Гесс открыл существование космических лучей, только это не совсем лучи, а протоки протонов и других субатомных частиц, пронизывающих всё пространство и движущихся со скоростью, почти равной скорости света и составляет от неё 99,99999999999999999999951% ! (по истине адское число)). Кстати, этот зафиксированный протон, угодивший в атмосферу Земли, был назван частицей OMG , что в переводе означает фразу «О Боже мой!», передающей всё удивление учёных, наблюдавших это явление в американской обсерватории в штате Юта.
Фотон
Несомненно, кванты света занимают первое место среди всех известных нам спринтеров, ведь никому и ничему не удалось догнать их. Да и получится ли когда-нибудь нам соревноваться с этими безмассовыми частицами, или мы придумаем какой-нибудь другой путь обмана известных нам законов физики.
Источник
4 способа обогнать свет, быстрейший во Вселенной
Считается, что ничто во Вселенной не может двигаться быстрее света. Ещё бы, он перемещается с огромной скоростью, и до сих пор не было обнаружено частиц, способных двигаться быстрее. Однако существует масса способов так или иначе превысить (или достичь) скорость света.
Какова скорость света
Во времена античности считалось, что скорость света – величина бесконечная, т.е. свет перемещается мгновенно. Позже, используя различные методы, измерить эту величину пытались многие ученые.
Самое точное измерение скорости света было сделано в 1983 году при помощи лазера. Скорость движения фотонов в вакууме равняется 299 792 458 м/с. Но можно ли превысить эту скорость?
Скорость света в вакууме превысить нельзя, но можно в других средах!
Скорость фотонов меняется в зависимости от среды , в которой они распространяются. Например в воде эта величина составляет 225341км/с, в стекле 199803 км/с, а в Алмазе «всего» 123845 км/с.
Более того, в 1999 году, немецким ученым удалось снизить скорость света до 17 м/сек. А позже они смогли остановить свет на целую минуту, при помощи экстремально охлажденного кристалла из сплава празеодима и силиката иттрия.
Поэтому любая частица, не имеющая массы и передвигающаяся со скоростью света, может обогнать замедленные фотоны. Например, гравитон или глюон. Также это может сделать электрическое поле, перемещающееся в проводнике.
Эффект Вавилова – Черенкова
В 1934 году Советские ученые Павел Алексеевич Черенков и Сергей Иванович Вавилов обнаружили, что жидкость, облучаемая гамма-лучами, испускает голубое свечение. Исследователи предположили, что светятся электроны, выбитые рентгеновским излучением из среды.
В 1957 году причина свечения электронов была раскрыта отечественными физиками Ильей Михайловичем Франком и Игорем Евгеньевичем Таммом.
Дело в том, что электрон во время движения, своим электрическим полем поляризует атомы вещества вокруг себя. Возвращение поляризованного атома в первоначальное состояние сопровождается свечением.
Происходит такое явление, только если электроны движутся быстрее скорости света. То есть, облучая жидкость рентгеновскими лучами, мы получаем частицы, которые перемещаются быстрее, чем свет.
Нейтрино
В 2011 году группа европейских ученых разогнала субатомную частицу – нейтрино, до сверхсветовой скорости. Частицы выпускались в лаборатории в Италии, а ловились за 730 км в Швейцарии. Нейтрино преодолели это расстояние на 57 наносекунд быстрее света.
Этот эксперимент стал сенсацией, которая пошатнула фундамент теории относительности Эйнштейна. Согласно этой теории, частица имеющая массу, не может достичь световой скорости, а тем более превысить ее. В этом случае масса нейтрино увеличивается бесконечно. Время же поворачивается вспять.
Однако позднее эта сенсация была опровергнута. Оказалось, что во время эксперимента произошел технический сбой, из-за которого результаты оказались искажены .
Расширение вселенной
После Большого Взрыва Вселенная постоянно расширяется. Скорость этого расширения неуклонно увеличивается . Дальние галактики удаляются от нас все быстрее и быстрее. В возрасте одной секунды, Вселенная уже была размером 10 световых лет. Спустя год (86400 секунды) —уже 100000 световых лет.
Понятно, что она расширяется гораздо быстрее скорости света. Однако в этом случае быстрее света расширяется пространство космоса – вакуум, а не материальные объекты.
Как итог, можно с уверенностью сказать: догнать обогнать свет возможно! А вот превысить скорость света пока что не удалось никому.
Источник
Быстрее скорости света: физика частиц
Однажды физики нам сказали: ничто быстрее света двигаться не способно. После того, как были поняты масштабы Вселенной, это поставило буквально крест на наших притязаниях по ее освоению. Мы просто не сможем преодолеть такие расстояния за человеческую жизнь.
1. Выходы
Физика – это такая наука, которая даже в имеющихся ограничениях находит лазейки. Есть ограничение на скорость перемещения в пространстве? Не беда, давайте придумаем способы обойти эту ситуацию.
За более чем 100 лет их изобрели не мало, и о них поговорим сегодня. Отмечу, что все эти гипотезы – пока являются теоретическими . Практика не всегда может их опровергнуть или подтвердить. Да и уровень развития современных технологий пока далек от того, чтобы сделать окончательный вывод.
2. Скорость света
Напомню, скорость света – это расстояние, которое он проходит за определенное время в какой-либо среде. Если говорить о вакууме, то здесь она равняется около 300 тыс. км/с.
Следовательно, в другой среде она может отличаться.
В частности, если свет пропустить через стекло, то он замедлится на 1,49 раза. При проходе через алмаз, фотоны света замедлятся на еще большую величину – в 2,42 раза.
Получается, даже понятие скорости света – относительно условное. Все зависит от среды распространения.
3. Хитрые обстоятельства
Выходит, что фотоны света могут не являться самыми скоростными частицами в некоторых средах. Другие микрочастицы в том же алмазе могут распространяться быстрее.
Ученые Вавилов и Черенков это продемонстрировали еще в первой половине прошлого века. А в 1958 году все участники эксперимента получили Нобелевскую премию.
Это можно считать условным звоночком в сторону абсолютности световой скорости.
Однако, вернемся к вакууму, в котором, якобы, ничто не способно опередить фотон. И здесь, также, имеются гипотетические опровержения.
4. Обходим свет
Раз двигаться быстрее 300 тыс. км/с нельзя, разрабатываются теории, которые могут позволять перемещаться на сколь угодно большие расстояния без движения в пространстве общепринятом понимании.
Отсюда возникли идеи о телепортации, поиске кротовых нор, темной энергии . Пояснять детально эти понятия не буду, они многим знакомы (особенно подписчикам ).
Источник