Меню

Скрытая масса вселенной это

Скрытая масса вселенной это

НАУКА
ОБРАЗОВАНИЕ
КУЛЬТУРА

Шустов Б. Скрытая масса. Что это такое?

Идея скрытой массы состоит в том, что мы живем во Вселенной, в которой доминирует ненаблюдаемое нами вещество.
Природа этого вещества, по большей части, неясна и, может быть, весьма необычна. Идея скрытой массы большинством астрономов воспринимается как нечто непонятное, но бесспорно установленное.
Поскольку даже в научной литературе используются различные и не всегда согласующиеся определения этой ненаблюдаемой составляющей Вселенной и ее компонентов, я буду использовать наиболее логичные, с моей точки зрения, определения.

Скрытой массой (CM, hidden mass) называют существующее во Вселенной, но ненаблюдаемое вещество. СМ состоит из двух, совершенно различных по природе компонентов: темного вещества (ТВ, dark matter) — вещества неизвестной природы, существование которого проявляется лишь косвенным образом — через гравитационные воздействия на различные объекты Вселенной, и барионного темного вещества (БТВ, baryonic dark matter) — обычного вещества, которое мы пока не можем наблюдать из-за ограниченных возможностей.

2-1О12М0и, в любом случае, не превышает 6-1О12М0П. Нижний предел массы гало оценивается как 1,4-1О12М0. Аналогичную оценку нижнего предела дает метод, предложенный еще в 1959 г. Суть метода состоит в анализе кинематики движений, а по существу гравитационных воздействий нашей Галактики и галактики М31 (они являются наиболее крупными и массивными членами Местной группы) друг на друга.

Таким образом, наблюдения с помощью относительно небольшого космического телескопа FUSE привели к удивительному результату, противоречащему сложившимся представлениям. Оказывается, значительную долю скрытой массы в окрестностях Галактики можно объяснить присутствием плохо обнаружимого, но весьма распространенного тепло-горячего компонента барионной составляющей Вселенной! Создаваемая сейчас под лидерством России международная внеатмосферная обсерватория «Спектр-УФ» («Всемирная космическая обсерватория») с диаметром зеркала телескопа 170 см, оснащенная набором современных спектрографов — наиболее эффективна для решения этой проблемы.

Источник

Скрытая масса вселенной это

Что такое скрытая масса?
24.08.2000 9:12 | К. А. Постнов/ГАИШ, Москва

Скрытой массой (или иначе, темной материей) называют вещество неизвестной природы, которое взаимодейтсвует с обычным (видимым) веществом практически только посредством сил притяжения. Из астрономических наблюдений мы знаем, что основная доля обычного вещества во Вселенной сосредоточена в звездах , которые наблюдаются по их излучению. Небольшая часть вещества существует в виде разреженного межзвездного галактического газа и пыли .

Однако как выяснилось, скрытого вещества по массе во много раз больше, чем обычного. Это настоящий вызов человеческому знанию: на пороге XXI века мы даже не представляем, из чего состоит вещество, в основном заполняющее Вселенную!

Как же возникла идея о невидимом для нас веществе? Впервые о скрытой массе заговорили в 30-х годах ХХ века, когда швейцарский астроном Цвикки , измеряя по красному смещению скорости вдоль луча зрения для галактик из скопления в созвездии Волосы Вероники , обнаружил, что скорости движения галактик в этом скоплении (за вычетом космологического красного смещения скопления как целого) соответствуют массе скопления, которая в десятки раз превышала массу, определенную по соотношению масса-светимость (то есть по видимому веществу). Цвикки выдвинул смелую гипотезу, что в этом скоплении галактик присутствует невидимая, скрытая масса, которая проявляется по большим скоростям движения галактик.

С тех пор гипотеза о существовании невидимого вещества привлекается для объяснения целого ряда астрономических наблюдений. Во-первых, скрытая масса требуется для объяснения вращения звезд по орбитам в дисках спиральных галактик . Если бы вся масса была сосредоточена в наблюдаенмых звездах, орбитальные скорости звезд во внешних частях галактик уменьшались бы с удалением от центра к краю. Однако это не так: как показывают оптические и радионаблюдения, в большинстве случаев скорости вращения звезд диска и газа вокруг центра галактик почти не зависят от расстояния до центра и более того, иногда даже возрастают. То же самое явление наблюдается и в нашей Галактике. Для объяснения такого поведения движения звезд приходится предполагать присутствие несветящейся, темной материи, которая простирается в десятки раз дальше видимой границы галактик (так называемое темное гало галактик). Как правило, масса темного гало в десятки раз больше массы всех видимых звезд в галактике. Типичная масса гигантских спиральных галактик типа Млечного Пути оказывается равной 10 12> масс Солнца , тогда как вещества в звездах раз в десять меньше.

В 70-х гг. с наступлением эры внеатмосферной рентгеновской астрономии был обнаружен горячий межгалактический газ , особенно заметный в скоплениях галактик . Его температура оказалась порядка нескольких миллионов градусов. Температура этого газа чувствительна к гравитационному потенциалу , в которм находится газ, а следовательно, к полной массе вещества, являющегося источником этого потенциала. Уже первые результаты рентгеновских наблюдений горячего газа в скоплениях галактик независимо подтвердили присутствие скрытой массы в исследуемых скоплениях.

Читайте также:  Самая великая тайна вселенной

Еще одно прямое указание на скрытую массу было получено при изучении движения местной группы галактик в пространстве. Скорость движения местной группы как целого была измерена по эффекту Доплера относительно реликтового микроволнового излучения Вселенной и оказалась около 630 км/с. В середине 80-х годов, после очень успешной миссии космической ИК-обсерватории ИРАС , стало ясно, что скорость движения местной группы в пространстве направлена в сторону относительного «избытка» числа галактик (как и ожидалось, ведь по закону всемирного тяготения большой избыток массы будет притягивать движение окружающих галактик и групп галактик). При этом измеренная скорость движения свидетельствовала также о присутствии скрытой массы!

Наконец, новейшие (1990) наблюдения слабых галактик с помощью чувствительных ПЗС-матриц позволили не просто подтвердить наличие скрытой массы в скоплениях галактик, но и «картографировать» ее распределение в скоплениях. Речь идет о методе так называемого гравитационного линзирования фоновых галактик скоплением. В данном случае гравитация скопления «работает» в качестве собирающей линзы для изображений слабых голубых галактик (как правило, 25-28 звездной величины ), находящихся далеко за самим скоплением. При этом изображения далеких галактик искажаются, «вытягиваясь» в дуги разной длины с центром, совпадающим с центром скопления. Интересно отметить, что впервые идею гравитационного линзирования скоплениями галактик далеких фоновых объектов выдвинул тот же Цвикки в 1937 г. Анализируя изображения слабых галактик за скоплением, можно восстановить распределение плотности в «линзе», т.е. в скоплении галактик. Оказалось, что создающая тяготение материя простирается далеко за пределы видимой границы скопления. Тем самым было получено еще одно независимое измерение скрытой массы в скоплениях галактик.

Описанные (а также некоторые другие) наблюдения убедительно показывают, что Вселенная в основном заполнена невидимым веществом неизвестной природы, которое проявлятся только по гравитационному взаимодействию. Это вещество образует протяженные гало галактик и заполняет пространство между галактиками, концентрируясь к скоплениям галактик.

Что можно сказать относительно природы этого вещества? Этот вопрос так далек от своего решения, что не ясно даже, создана ли скрытая масса некоторыми пока не наблюдавшимися элементарными частицами, или состоит из протяженных массивных объектов. К последним могут относиться «комки» вещества с массой 10 -8 масс Солнца , невидимые планеты типа Юпитера с массами около одной тысячной масс Солнца, или даже черные дыры с массой в 100 солнечных. Эти невидимые объекты могут быть или «строительным мусором», оставшимся от эпохи образования галактик, или остатками эволюции звезд , существовавших до момента образования галактик.

Следует отметить, что в настоящее время проблема скрытой массы далеко вышла за рамки наблюдательной астрономии . Дело в том, что согласно современной теории горячей Вселенной , максимально допустимая плотность барионов ( протонов и нейтронов ), составляющих основную массу видимого вещества и образовавшихся на ранних стадиях эволюции Вселенной , составляет никак не более 10% от плотности, при которой Вселенная становится замкнутой (так называемая критическая плотность ). Согласно современным представлениям, полная плотность вещества во Вселенной должна не сильно отличаться от критической — значит требуется предположить либо существование дополнительной, небарионной массы, либо считать, что пустое пространство (вакуум) само дает вклад в полную плотность (так называемая космологическая постоянная ), либо есть и то и другое. Такая небарионная скрытая масса могла бы состоять из частиц с небольшой массой покоя (в миллионы раз меньшей массы покоя электрона ), существование которых следует из современной теории элементарных частиц . Поиски таких частиц усиленно ведутся на самых мощных ускорителях , но пока не увенчались успехом.

Добавим, однако, что из наблюдений светящегося вещества получается, что мы видим всего лишь ничтожную десятую или сотую долю даже барионного вещества, то есть во Вселенной есть скрытые объекты барионной природы типа темных карликов или юпитеров , о которых мы уже упомянули выше.

Новейшие наблюдения гравитационного микролинзирования миллионов звезд в Магеллановых Облаках уже обнаружили несколько событий, котрорые могут быть связаны с темными объектами в гало нашей Галактики , однако пока трудно окончательно оценить вкалд этих объектов в массу невидимого вещества. Изучая эффекты гравитационного микролинзирования, чувствительного к обнаружению невидимых гравитирующих объектов с массами от 10 -8 до 10 3 масс Солнца, ученые надеются пролить новый свет на увлекательную и загадочную проблему скрытой массы в нашей Галактике и во Вселенной.

Источник

Скрытая масса

Космология
Изучаемые объекты и процессы
  • Вселенная
    • Наблюдаемая Вселенная
    • Возраст Вселенной
  • Крупномасштабная структура Вселенной
    • Формирование структуры
  • Реликтовое излучение
  • Тёмная энергия
  • Скрытая масса
Наблюдаемые процессы
  • Космологическое красное смещение
  • Расширение Вселенной
  • Формирование галактик
  • Закон Хаббла
  • Нуклеосинтез
Теоретические изыскания
  • Космологические модели
    • Космическая инфляция
    • Большой взрыв
      • Хронология Большого взрыва
    • Вселенная Фридмана
      • Сопутствующее расстояние
    • Модель Лямбда-CDM‎
  • Космологический принцип
  • Космологическое уравнение состояния
  • Критическая плотность
  • Хронология космологии
Читайте также:  Возраст звездам нашей вселенной

Скры́тая ма́сса (в космологии и астрофизике также тёмная материя, тёмное вещество) — общее название совокупности астрономических объектов, недоступных прямым наблюдениям современными средствами астрономии (то есть не испускающих электромагнитного или нейтринного излучения достаточной для наблюдений интенсивности и не поглощающего их), но наблюдаемых косвенно по гравитационным эффектам (в частности по эффекту «гравитационной линзы»), оказываемым на видимые объекты. Учёные считают, что количество тёмной материи как минимум в 5 раз больше количества видимой.

Общая проблема скрытой массы состоит из двух частей:

  • астрофизической, то есть противоречия наблюдаемой массы гравитационно связанных объектов и их систем, таких, как галактики и их скопления, с их наблюдаемыми параметрами, определяемыми гравитационными эффектами;
  • космологической — противоречия наблюдаемых космологических параметров полученной по астрофизическим данным средней плотности Вселенной.

Содержание

Наблюдаемые данные гравитационных эффектов скрытой массы

Скрытая масса и вращение галактик

Дифференциальные скорости вращения галактик (то есть зависимость скорости вращения галактических объектов от расстояния до центра галактики) определяются распределением массы в данной галактике и для сферического объёма с радиусом , в котором заключена масса , задаются соотношением

,

т. е. за пределами объёма , в котором сосредоточена основная масса галактики скорость вращения . Однако для многих спиральных галактик скорость остаётся почти постоянной на весьма значительном удалении от центра (20—25 килопарсек), что противоречит быстрому убыванию плотности наблюдаемой материи от центра галактик к их периферии (см. Рис. 1).

Таким образом, для объяснения наблюдаемых значений необходимо допустить существование ненаблюдаемой (несветящейся) материи, простирающейся на расстояния, превышающие в десятки раз видимые границы галактик и с массой, на порядок выше совокупной массы наблюдаемой светящейся материи галактики (гало галактик).

Современная стандартная космологическая модель ведёт к заключению, что видимые массы барионного вещества в галактиках существенно ниже, чем предсказываемые. В последнее время появились результаты, которые свидетельствуют, что эта недостающая барионная масса может быть сосредоточена в гало галактик в виде горячего межгалактического газа с температурой от 1 000 000 до 2 500 000 К. [1] [2]

Масса скоплений галактик: проблема Цвикки

В 1937 году Фриц Цвикки (Fritz Zwicky) опубликовал работу «On the Masses of Nebulae and of Clusters of Nebulae» [3] , в которой на основе наблюдений относительных скоростей галактик в скоплении Волос Вероники на 18-дюймовом телескопе Шмидта Паломарской обсерватории получил парадоксальный результат: наблюдаемая масса скопления (полученная по суммарным светимостям галактик и их красному смещению) оказалась значительно ниже массы скопления, рассчитанной исходя из собственных скоростей членов скопления (полученных по дисперсии красного смещения) в соответствии с теоремой о вириале: суммарная наблюдаемая масса скопления оказалась в 500 раз ниже расчётной, то есть недостаточной, чтобы удерживать составляющие его галактики от «разлетания».

Масса скоплений галактик: горячий межгалактический газ

С развитием рентгеновской астрономии в скоплениях галактик было обнаружено рентгеновское излучение горячего (разогретого до температур порядка 10 6 K) газа, заполняющего межгалактическую среду, — то есть была обнаружена часть скрытой массы таких скоплений. Однако суммирование наблюдаемых масс такого газа с наблюдаемыми массами галактик скопления не дало массы, достаточной ни для удержания галактик, ни для удержания газа в скоплениях.

Гравитационное линзирование фона галактиками и их скоплениями

Одним из косвенных методов оценки массы галактик является гравитационное линзирование ими фоновых (расположенных на линии наблюдения за ними) объектов. В данном случае эффект гравитационного линзирования может проявляться в виде искажения изображения фонового объекта, либо появлении его многократных мнимых изображений. Решение обратной задачи, то есть расчёт гравитационного поля, необходимого для получения таких изображений, позволяет оценить массу гравитационной линзы — скопления галактик. И в этом случае расчётные значения значительно превосходят наблюдаемые (см. Рис. 2).

Природа и состав скрытой массы

Кроме прямых наблюдений гравитационных эффектов скрытой массы существует ряд объектов, прямое наблюдение которых затруднено, но которые могут вносить вклад в состав скрытой массы. В настоящее время рассматриваются объекты барионной и небарионной природы: если к первым относятся достаточно хорошо известные астрономические объекты, то в качестве кандидатов во вторые рассматриваются страпельки и гипотетические элементарные частицы, следующие из классической квантовой хромодинамики (аксионы) и суперсимметричных расширений квантовых теорий поля.

Массивные объекты гало галактик

Для объяснения отклонения скоростей вращений галактических объектов от кеплеровских следует предположить наличие массивного тёмного гало галактик. К массивным объектам гало галактик (Massive Astrophysical Compact Halo Objects, MACHO) относятся слабоизлучающие компактные объекты, в первую очередь маломассивные звёзды — коричневые карлики, субзвёзды или очень массивные юпитероподобные планеты, масса которых недостаточна для инициирования термоядерных реакций в их недрах, остывшие белые карлики, нейтронные звёзды и чёрные дыры.

Межгалактический газ: Лайман-альфа лес

В отличие от упоминавшегося выше горячего газа галактических скоплений, излучающего в рентгеновском диапазоне, наблюдения спектров квазаров свидетельствуют о достаточно массивных межгалактических облаках водорода. В спектрах квазаров с достаточно высоким красным смещением наблюдается множество смещённых линий («лес» линий) поглощения Лайман-альфа водорода, образованных множеством облаков водорода, расположенных на разном расстоянии по лучу зрения. Такой феномен получил название Лайман-альфа лес (англ. Lyman-alpha forest ).

Небарионная тёмная материя

По современным представлениям, только около 4,4 % массы Вселенной составляет обычная барионная материя. Приблизительно 23 % приходится на небарионную тёмную материю, не участвующую в сильном и электромагнитном взаимодействии. Она наблюдается только в гравитационных эффектах.

В зависимости от скорости частиц различают горячую и холодную тёмную материю. Горячая тёмная материя состоит из частиц, движущихся с околосветовыми скоростями, по-видимому, из нейтрино.

Горячей тёмной материи недостаточно, по современным представлениям, для формирования галактик. Исследование структуры реликтового излучения показало, что существовали очень мелкие флуктуации плотности вещества. Быстро движущаяся горячая тёмная материя не могла бы сформировать такую тонкую структуру.

Холодная тёмная материя должна состоять из массивных медленно движущихся (и в этом смысле «холодных») частиц или сгустков вещества. Экспериментально такие частицы не обнаружены.

В качестве кандидатов на роль холодной тёмной материи выступают слабо взаимодействующие массивные частицы (Weakly Interactive Massive Particles, WIMP), такие как аксионы и суперсимметричные партнёры-фермионы лёгких бозонов — фотино, гравитино и др.

Впервые предположение о существовании материи, взаимодействующей с обычным веществом только через гравитацию, было высказано в начале XX века в связи с аномальной прецессией перигелия Меркурия. Однако эта проблема была решена уже в 1916 году Альбертом Эйнштейном благодаря его Общей теории относительности, внёсшей в ньютоновскую теорию гравитации соответствующую поправку на орбитальные движения, исчерпывающе объясняющую наблюдаемое явление, что послужило и первым подтверждением ОТО.

Также предпринимаются попытки объяснить кривые вращения галактик изменением законов гравитационного взаимодействия на больши́х масштабах (в частности, модифицированная ньютоновская динамика — MOND), однако предсказываемые в рамках MOND профили плотности и температуры горячего газа в скоплениях галактик сильно расходятся с наблюдаемыми [4] .

Скрытая масса и космологические параметры, проблема тёмной энергии

Одной из основных проблем космологии является вопрос о средней кривизне пространства и темпе расширения Вселенной. Если кривизна пространства нулевая или отрицательная, то расширение Вселенной происходит неограниченно (плоская и открытая модели Вселенной); если кривизна положительна, то расширение Вселенной должно смениться сжатием (закрытая модель Вселенной). В свою очередь, в рамках общей теории относительности (ОТО), средняя кривизна пространства Вселенной зависит от её средней плотности, нулевой кривизне соответствует критическая плотность

10 −29 г/см³, что эквивалентно примерно 5 атомам водорода на м³. Однако, несмотря на то, что наблюдаемое значение средней плотности светящейся материи составляет порядка 1 % от критической, данные наблюдений свидетельствуют о том, что кривизна Вселенной близка к нулю, т. е. довольно близко к

В 1917 г. Эйнштейн для обеспечения стационарности (независимости от времени) космологической модели ОТО ввёл космологическую постоянную , действующую в больших масштабах как сила отталкивания, однако в 1922 г. Фридман опубликовал работу по космологической модели нестационарной расширяющейся Вселенной, в которой космологическая постоянная была равна нулю. После открытия Хабблом красного смещения, т. е. космологического расширения, основания для введения космологической постоянной отпали, и сам Эйнштейн в разговоре с Гамовым назвал идею космологической постоянной своим самым большим промахом (англ. biggest blunder ) в науке.

Вместе с тем, наблюдения сверхновых типа Ia, проведённые в 1998 г. в рамках Supernova Cosmology Project показали, что постоянная Хаббла меняется со временем таким образом, что её поведение можно объяснить соответствующим подбором величины космологической постоянной , вносящей вклад в среднюю плотность . Эта часть скрытой массы получила название тёмной энергии (англ. dark energy ).

Интерпретация данных по анизотропии реликтового излучения, полученных в ходе работы WMAP (англ. Wilkinson Microwave Anisotropy Probe , 2003 г.) дала следующие результаты: наблюдаемая плотность близка к и распределение по компонентам: барионная материя — 4,4 %, тёмная холодная материя (WIMP) — 23 %, «тёмная энергия» — 72,6 %.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector