150 лет самой известной из первых фотографий Луны
Льюис Моррис Резерфорд, 1816 — 1892
Сегодня мы со сдержанным интересом рассматриваем фотографии Марса, карликовой планеты Церера или вид на Землю через кольца Сатурна. Кажется, уже давным-давно каждый нашёл на спутниковых снимках свой дом. Астрономы-любители смотрят в небо, фотографируют небесные тела и делают красивые таймлапсы, на которых видно Млечный путь.
Нынешнее поколение уже не знает, что такое фотоплёнка и никогда не видели фотоаппарат Polaroid, выдававший моментальные снимки. Иногда, приходя в гости, делают вид, что им интересно рассматривать альбом пожелтевших фотографий. А сами ежедневно делают селфи с дакфейсами.
А ведь когда-то сама фотография была техническим чудом настолько малораспространённым, что лишь малая часть людей видела фотокарточку – тем более, фотографировалась. И хотя ночное небо до сих пор таит в себе множество загадок, тогда оно было исследовано гораздо меньше.
В начале 19 века родился в поместье Моррисана (штат Нью-Йорк) Льюис Моррис Резерфорд. Родиться мальчику повезло в аристократической семье. Ещё бы, его дедушка по батюшке был американским сенатором. А прадедушка по матушке, Льюис Моррис, в честь которого и был назван мальчик, вообще был одним из тех, кто поставил свою подпись под Декларацией независимости! И название поместья происходило как раз от этой благородной фамилии. Сейчас это – просто район на юге Бронкса.
Поэтому и обучаться он пошёл на престижную профессию юриста в хорошее учебное заведение Вильямс-колледж. А закончив, прошёл практику и поступил на службу по специальности в городе Оберн (что по-американски значит «золотисто-каштановый») штата Нью-Йорк. Город был хоть и небольшой, но продвинутый. Например, в конце 19 века здесь состоялась первая в мире казнь при помощи электрического стула. И неизвестно, связано ли как-то это событие с тем, что в этом же городе много позже была сформирована хеви-метал группа Manowar – но факт остаётся фактом.
Но была у Резерфорда одна страсть – наука. Точнее, астрономия. Его всегда занимало звёздное небо и его тайны. Поэтому, благо семья его была довольно обеспеченной, в 33 года он оставил скучное дело законника, и решил посвятить свою жизнь науке. И весьма, надо сказать, в этом преуспел. Проделал первые работы в области спектрального анализа. Проводил эксперименты в астрофотографии. Изобрёл микрометр для фотографий, машину для изготовления дифракционных решёток, и первый телескоп, специально предназначенный для астрофотографии.
И благодаря своим инструментам сделал множество первых фотографий Солнца, Луны, различных звёзд, туманностей и скоплений вплоть до пятой величины. Кроме этого, он сумел разглядеть, что звёзды делятся на различные спектральные классы. Снимки Плеяд, полученные им при помощи специально изготовленного объектива, впервые позволили использовать фотографию в измерительной астрономии. Дошло до того, что он стал одним из основателей Национальной академии наук США – главной американской научной организации.
Вспоминаем мы об этом учёном и изобретателе потому, что 6 марта 1865 года, то есть 150 лет назад, им была сделана замечательная (и одна из первых) фотография Луны. Ричард Проктор, популяризатор науки в 19 веке, назвал Резерфорда «величайшим фотографом луны нашего времени».
То самое фото Луны от 6 марта 1865, которое попало в книгу известного физика, химика и фотохимика Германа Вильгельма Фогеля
А вот ещё несколько его работ:
«Луна в первой четверти», 4 марта 1865
Плеяды
Ещё Луна
Стереофотокарточки, для которых были использованы его фотографии
И могила учёного
Источник
Посмотрите на самые подробные фотографии Луны за всю историю изучения
Участники индийской миссии «Чандраян-2» опубликовали самые подробные снимки Луны за всю историю ее изучения. Снимки сделаны 5 сентября 2019 года — за два дня до падения спутника на поверхность Луны. Об этом пишет New Atlas.
7 сентября посадочный модуль «Викрам» индийской лунной миссии «Чандраян-2» потерял связь с Землей при посадке на поверхность Луны. Если бы операция прошла успешно, Индия стала бы четвертой страной, посадившей на Луну неповрежденный космический корабль.
В конце сентября НАСА пыталась заснять регион, куда упал «Чандраян-2», однако на этих фотографиях ничего не удалось обнаружить. Инженеры считают, что «Чандраян-2» упал на дно кратера и сейчас находится в тени.
За несколько дней до падения «Чандраян-2» передал на Землю подробные снимки поверхности Луны.
Ранее «Хайтек» подробно рассказывал о спутнике «Чандраян-2» и его отличиях от аналогичных миссий.
Источник
След катастрофы. Загадки обратной стороны Луны
Китайский луноход уже год пытается найти ответы на вопросы, которые интересуют всё человечество: почему невидимая часть поверхности спутника так разительно отличается от видимой и что всё-таки произошло 4 миллиарда лет назад.
Первый снимок обратной стороны Луны («Луна-3», 1959). Фото © Wikipedia
«Уважаемому А.Б. Северному первая фотография обратной стороны Луны, которая не должна была получиться. Королёв. 7 октября 1959 года«.
А.Б. Северный — это советский астрофизик Андрей Борисович Северный. В основном занимался физикой Солнца. Однажды заявил главному конструктору, что солнечная радиация засветит плёнку и не позволит сделать фотографию. Точно такого же мнения был один французский винодел по имени Анри Мэр. Но не из-за излучения, а вообще — мол, impossible, «невозможно». Заключил даже пари на тысячу бутылок истинного шампанского. Впоследствии Сергей Павлович лично раздавал выигрыш сотрудникам ОКБ-1 (ныне РКК «Энергия»), которые разрабатывали космический аппарат «Луна-3». Как вспоминают учёные, по две бутылки.
Справедливости ради надо сказать, что тот первый снимок сделали не на советскую плёнку, а, можно сказать, на трофейную — со сбитых американских шпионских спутников. Она была куда как более выносливая. Ну а что? Шпионить можно, а плёнку брать нельзя?
Конечно, качество довольно плачевное, тем не менее многое вполне можно различить. С правой стороны наверху пятнышко позже назвали Морем Москвы, 275 километров в диаметре. По мнению учёных, след от удара, который заполнился лавой. Внизу, практически прямо под ним — кратер Циолковский, тоже ударный, 180-километровый. Более крупные пятна слева — это уже видимая лунная сторона. Таким образом, уже тогда была видна внушительная разница между двумя половинками.
Как ни странно, именно на «той стороне» находится крупнейший лунный кратер. Его именуют бассейном, хотя по площади он сравним с земным Коралловым морем — без малого пять миллионов квадратных километров. Видите обширную темноватую область внизу? Это он и есть, бассейн Южный полюс — Эйткен. Это условное название, по расположению: внизу полюс, наверху кратер, названный в честь американского астронома Роберта Эйткена. В глубину этот бассейн достигает восьми километров. Кстати, как раз там сейчас китайская станция «Чанъэ-4» с луноходом «Юйту-2».
Но по большому счёту вот, собственно, и всё, что там чисто внешне выделяется на общем фоне: Эйткен, Москва и Циолковский. В остальном всё на первый взгляд сравнительно ровно и однообразно.
Сейчас науке известны и некоторые другие отличия «тёмной» стороны. К примеру, интересно то, что там как минимум на 10 километров толще лунная кора. И вообще очень много возвышенностей. За это обратную сторону Луны даже прозвали горбатой. Самая высокая точка Луны расположена рядом с кратером Королёв, и это символично. 10 километров 786 метров. Считают от условной точки — 1737 километров от центра Луны.
То есть с одной стороны моря, с другой горы. И это при том, что морская фигура, вообще-то, тяжелее. Собственно, центр массы сдвинут от центра геометрического на два километра в нашу сторону.
И, наконец, гравитация Луны. Она везде разная. Где-то посильнее, где-то послабее. Это зависит от плотности вещества в данной области. Есть даже соответствующая лунная карта. Вообще, лучше всего, пожалуй, для сравнения просмотреть вот такое видео от NASA. Слева — топографическая карта, то есть с обозначенными низменностями (синие) и возвышенностями (жёлтые и красные). А с правой стороны — как раз насчёт гравитации. Ярко-красные пятна — это где сравнительно сильное притяжение, тёмно-синие — где наоборот. И то и другое называется гравитационными аномалиями. Всё это показали приборы, установленные на двух зондах лунной орбитальной станции GRAIL.
Обратите внимание: два самых больших красных глаза — это те, которые грустно смотрят на нас по ночам. Вообще, тут у нас с этой стороны имеется заметное количество таких особо притягательных районов. А вот за гранью нашего с вами непосредственного наблюдения как-то больше синих ям. И в то же время есть «румянец» — на местах тех самых возвышенностей.
Своеобразная картина получается. Итого у нас три основных вопроса.
Почему на обратной стороне так мало лунных морей?
На этот счёт имеется, к примеру, исследование японского Института космической науки. Там проанализировали химический состав лунных пород и предположили следующее: давным-давно, четыре с половиной миллиарда лет тому назад, когда Земля и Луна только образовались, они были очень раскалёнными. Всё это потому, что они формировались, «слеплялись» из более мелких тел в результате бесконечных столкновений. Но возникший на орбите «комок» оказался настолько близко, что гравитация Земли поймала его в ловушку под названием приливный захват: совпадение скорости вращения вокруг своей оси и скорости вращения вокруг «хозяйки», в данном случае — Земли. Довольно частое явление в космосе. И что получилось? А получилось то самое весьма одностороннее представление о Луне. И тут надо обязательно учесть, что Земля была чудовищным тлеющим углём. Луна около этого огонька грелась всё время одним боком. А другой остывал. Метеориты при этом падали дождём, не спрашивая, куда лучше. Но с той стороны они ударялись в более твёрдую поверхность, а с нашей тёплой стороны она ещё была несколько более вязкая, и притом на ней происходили извержения вулканов. Упадёт что-нибудь в эту кашу, пробьёт ещё не застывшую кору, и из раскалённой мантии всё вокруг заливает потоком лавы. Вот так и получились моря Дождей, Спокойствия, Кризисов и прочие лунные «водоёмы», по мнению планетологов. Именно на «лицевой» стороне, потому что там было просто-напросто теплее.
Почему по-разному распределены гравитационные аномалии?
Потому что земное притяжение «тянуло» к себе всё, что потяжелее. Так же, как Луна немного тащит за собой наши океаны. Приливы в лунных океанах магмы закончились тем, что на «лице» скопились более тяжёлые породы. Этим и объясняют учёные обилие участков с усиленным притяжением именно на видимой стороне.
Откуда тогда «горб» именно на обратной стороне Луны?
Это вообще эпичная теория. Она гласит, что изначально у нас был не один «протоспутник», вокруг болтался как минимум ещё один сгусток материи. А может быть, и больше. И в какой-то момент он просто врезался в Луну, да с такой силой, что его просто расплющило по внешней стороне. Вот эти горы и есть то, что «налипло» таким вот образом.
Всё это сейчас и пытается прояснить «Чанъэ-4». Чанъэ — это имя богини Луны в китайской мифологии. Скоро станция уже во второй раз встретит на обратной стороне Луны Новый год по китайскому календарю. Прилунилась 3 января 2019 года в кратере фон Кармана, и это тоже символично. Американский учёный венгерского происхождения Теодор фон Карман был учителем Цяня Сюэсэня, основоположника китайской космонавтики. Помощником неподвижной богини стал луноход «Нефритовый заяц» — «Юйту-2».
China National Space Administration releases video recording of entire soft landing on moon’s far side by China’s #ChangE4 probe pic.twitter.com/bbp1ul2gq7
Что они на сегодняшний день нашли. Во-первых, природные минералы оливин и ортопироксен. Это силикатные породы, таких много в земной мантии. Поэтому есть большие подозрения, что «Чанъэ-4» удалось найти кусочки лунной. Теперь их сравнят с образцами грунта, взятыми на видимой стороне.
Во-вторых, тёмный минерал с осколками чёрного стекла. Нечто похожее нашёл в 1972 году американский астронавт Харрисон Шмитт. Считается, что такое вещество образовалось на Луне от удара метеоритов.
И, наконец, во всяком случае один вопрос уж точно решён положительно: можно ли на обратной стороне Луны выращивать картошку, рапс и хлопок? Можно.
Источник
Луна под микроскопом
Слева вы видите фотографию Луны сделанную при помощи цифрового микроскопа DigiMicro Mobile. Это снимок настоящей Луны, а не переснятая фотопленка или слайд. Я использовал довольно необычное решение — подключил микроскоп к телескопу. О том как и зачем я это сделал, подробно описано в статье Микроскоп + Телескоп = ?.
Если вы не читали ту статью, рекомендую просмотреть ее хотя бы по диагонали чтобы понимать происходящее под катом. В ней я рассказал о принципах работы телескопа, микроскопа и о теоретической возможности объединения их оптических схем. Описал изготовление переходника телескоп-микроскоп при помощи 3D печати. Первое испытание конструкции было проведено днем, по удаленным наземным объектам. Перейти к астрономическим наблюдениям не удалось из-за неблагоприятных погодных условий. Судя по результатам опроса, идея многих заинтересовала (406 голосов за продолжение, 92 против), поэтому публикую продолжение с настоящей Луной под объективом микроскопа.
Считайте это занимательным экспериментом с оптикой и фототехникой, наподобие макросъемки через капельку воды, а не серьезным руководством по астрофотографии. Для качественной съемки Луны через телескоп лучше использовать специальную астрокамеру или зеркалку с T-адаптером в прямом фокусе.
О процессе съемки микроскопом
Прежде чем приступить к съемке Луны, расскажу поподробнее о некоторых важных моментах не упомянутых в предыдущей статье. Между нажатием на спуск и собственно съемкой проходит где-то 0.3-0.4 секунды (выяснил, снимая бегущий секундомер), что позволяет избежать «шевеленки» при использовании микроскопа по прямому назначению. Во время съемки в связке с телескопом, такой задержки явно недостаточно. Моя бюджетная монтировочка CG3 дрожит как осиновый лист от малейшего прикосновения, колебания затухают несколько секунд, даже если не раскладывать ноги на всю длину.
Сперва у меня была мысль впаять геркон параллельно кнопке спуска и снимать поднося магнит, но потом я обнаружил в настройках микроскопа режим «Time Lapse».
Нет, в этом режиме микроскоп не записывает ускоренное видео, он просто автоматически делает заданное число кадров с указанным интервалом (от секунды и больше). Видео надо потом собирать из отдельных кадров на компьютере. Я опробовал этот режим засняв кристаллизацию поваренной соли из раствора на скорости 1 кадр в минуту. Кристаллы медленно растут на дне тарелочки с раствором, увеличение минимальное, размер самых крупных кубиков — чуть меньше миллиметра.
Еще один эксперимент — с содой. В отличие от кубических кристалликов хлорида натрия, гидрокарбонат натрия оседает красивыми игольчатыми снежинками. Здесь я снимаю маленькую высыхающую капельку, из-за чего кристаллы растут гораздо быстрее и получаются очень мелкими. Поэтому увеличение максимальное, скорость съемки — 1 кадр в секунду.
Режим «Time Lapse» сильно пригодился при работе с телескопом, для избежания тряски при съемке. Я запускал серийную съемку с секундным интервалом, а сам тем временем наводился на объект, менял увеличение, подстраивал фокус, периодически убирая руки от телескопа с микроскопом чтобы сохранились несмазанные кадры.
Съемка молодой Луны связкой микроскоп + телескоп
Через несколько дней после новолуния (которое кстати сопровождалось полным солнечным затмением) наконец-то установилась ясная погода. Фаза Луны приближалась к первой четверти, что означало благоприятные условия наблюдений в вечернее время. Я подсоединил микроскоп к телескопу и стал дожидаться темноты.
Оставался еще один повод для волнений. Дело в том что в камере микроскопа нет возможности ручной регулировки выдержки. Для микроскопа это неважно, так как есть регулируемая подсветка. В случае с Луной подсветка бесполезна. Логика «автомата» будет ориентироваться на среднюю яркость кадра и пытаться вытянуть несуществующие детали черного фона. В результате поверхность Луны будет безнадежно пересвечена. Поэтому я решил не дожидаться полной темноты, а начал снимать вскоре после заката. Я рассчитывал на то что светлый фон неба, который обычно мешает дневным наблюдениям, сыграет мне на руку. Вот один из первых пробных кадров:
Как оказалось, надо было начать снимать еще раньше, небо уже недостаточно светлое. Когда стемнело еще сильнее и фон неба на кадрах стал практически черным, деталей на Луне стало еще меньше, все засвечивалось.
И тут я вспомнил про регулируемую подсветку. Конечно она не поможет сделать небо поярче. Но я могу поместить в поле зрения что-то что будет освещаться подсветкой! Это будет влиять на среднюю яркость кадра, что в свою очередь приведет к уменьшению выдержки «автоматом». Из кусочка фольги для запекания и полоски малярного скотча я быстренько соорудил вот такую диафрагму.
Отверстие по центру пробито канцелярским дыроколом. Вставляем изделие внутрь переходника, таким образом чтобы поверхность фольги оказалась в фокальной плоскости телескопа:
Собираем все обратно. Теперь можно регулировать выдержку колесиком яркости подсветки, пожертвовав частью полезной площади кадра. Получился забавный снимок. Под объективом микроскопа — кусочек алюминиевой фольги с отверстием диаметром около 6 мм. В этом отверстии, «подвешено в воздухе» изображение Луны шириной почти три с половиной тысячи километров, сформированное зеркалом телескопа. И все в фокусе! Ну ладно, не совсем все, фольга немного помялась 🙂
Луна все же немного не пролезла в отверстие от дырокола. Я решил пока не возиться с подгонкой отверстия, а попробовать поснимать с увеличением побольше. В этом случае Луна перестанет помещаться в кадр, но зато площадь черного неба уменьшится, и правильная выдержка получится без дополнительных ухищрений.
Проблема только в том что придется клеить панораму для получения снимка вcей Луны. Заглавная фотография статьи склеена из этих трех кадров, и повернута таким образом чтобы север был сверху:
Плохо что у микроскопа нет автофокуса. Чтобы не промахиваться с фокусировкой, можно сделать маску Бахтинова.
Какое получилось увеличение?
Вопрос интересный, но не совсем корректный. Когда мы говорим об увеличении оптического телескопа или микроскопа при визуальных наблюдениях, мы сравниваем угол под которым объект виден вооруженным и невооруженным глазом. Например, мой телескоп с фокусным расстоянием зеркала 650 мм дает увеличение в 65 раз при использовании 10 мм окуляра. Если же приемником света является матрица, то как сравнивать размеры? Угловое увеличение будет зависеть от устройства вывода изображения и расстояния при просмотре.
Можно подойти к вопросу с другой стороны и сравнить размеры деталей поверхности Луны — видимые невооруженным глазом (или через оптический прибор с известным увеличением), и различимые на моих снимках. Самые характерные детали лунного рельефа — кратеры. Правда они не видны невооруженным глазом (по крайней мере моим). Они вообще не были известны до того как Галилео Галилей открыл их с помощью своего первого телескопа с трехкратным увеличением (и ввел в обиход сам термин «кратер»). Кратеры на видимой стороне Луны, которые наблюдал и зарисовал Галилей, имеют диаметры 100-200 километров:
На фотографиях Луны под микроскопом видны кратеры до 10-20 км в диаметре (например, Свифт и Пирс).
Получается что на моих фотографиях видны детали в 10 раз более мелкие чем видел Галилей в свою трехкратную трубу. Следовательно, увеличение можно грубо оценить как тридцатикратное. При визуальных наблюдениях с 65-кратным увеличением через тот же телескоп видно гораздо больше деталей, что согласуется с полученной оценкой.
Казалось бы, ничего выдающегося, результат всего на порядок лучше чем у Галилея. Но, как подсказывает в соседнем посте galaxy, детали поверхности мельче 1 километра невозможно разглядеть ни в какой наземный телескоп из-за влияния атмосферы. Так что результат в каком-то смысле самый средний — в 10 раз лучше первого телескопа 17-го века, и в 10 раз хуже теоретического предела современных телескопов.
А что насчет стекинга?
В предыдущей статье я обещал затронуть эту тему, но все приведенные выше кадры — одиночные. Любители астрономии при съемке небесных объектов в большинстве случаев используют технику стекинга — снимают серию из множества кадров (или видеоролик), и затем объединяют их в один. Это позволяет избавиться от шумов матрицы, атмосферных искажений, и значительно повысить качество результата. С микроскопом этот трюк не получился — у моего телескопа нет моторчика для слежения за Луной, она слишком быстро убегает из кадра. При съемке с секундным интервалом Луна успевает сильно сместиться между кадрами и возникает проблема с выравниваением серии. Зато это работает при съемке айфоном через окуляр (я так снимал затмение). Вместо серийной съемки можно записывать HD видео 30 кадров в секунду, Луна мало смещается между кадрами и Registax отлично справляется с выравниванием. К тому же у телефона есть автофокус который исправляет ошибки фокусировки.
Исходное видео (я все таки сделал это, я снял и опубликовал вертикальное видео с айфона):
Для сравнения, положил рядом кадр с микроскопа, единичный кадр с айфона и результат стекинга 100 кадров с айфона.
Технические данные
Все фотографии Луны под микроскопом — кликабельные, можно рассмотреть их покрупнее. Учтите что Habrastorage автоматически уменьшает все залитые изображения до 1920 точек по ширине. Необработанные оригиналы снимков с микроскопа разрешением 2560х1920 и видео с телефона 1080×1920 можно скачать здесь: https://goo.gl/Q5czXj; наверняка у кого-то из читателей получатся более качественные результаты обработки. Разрешение снимков близко к завяленным 5 мегапикселям и по видимому соответствует родному разрешению матрицы микроскопа. В настройках есть варианты побольше, но это уже будет апскейлинг. Цифровой зум нигде не использовался.
По маркировке на плате можно нагуглить китайских родственников данного гаджета.
Заключение
В результате описанных оптических опытов микроскоп ничуть не пострадал и его можно продолжать использовать по прямому назначению. Приобрести такой же микроскоп можно в интернет-магазине Даджет.
Я сделал эти снимки в Государственном музее истории космонавтики имени К.Э. Циолковского. Увидеть на расстоянии нескольких сантиметров частички настоящей Луны, пусть даже через стекло витрины — незабываемое ощущение.
Источник