Меню

Содержание водорода во вселенной

Водород — основа Вселенной

Многие, если их спросить какой элемент самый важный во вселенной, наверное ответят углерод, кислород, скорее всего азот, но мало кто будет утверждать что это водород. А что мы знаем о нем, кроме того, что он занимает почётное место в таблице Менделеева, входит в состав воды- источника жизни, и это самый простой элемент, но за его простотой кроется его важная роль в развитии мира.

Человечество только недавно начала изучать свойство водорода, результат этого изучения стало появление страшного оружия, а именно водородная бомба, по своей разрушительной силе превосходящее атомную бомбу. В данный момент для неё могут использовать гелий, дейтерий, но названа она так, потому-что впервые в ней был применен водород.

Примечательный факт: водорода в самой бомбе не хватит даже на обычный воздушный шарик.

И это неоспоримый факт возможности водорода. Вернемся к вопросу, почему водород основной элемент во вселенной. По данным ученным после большого взрыва, произошел выброс огромного количества водорода, ударная волна в свою очередь заставила этот водород завихряться.

Он сгущался, разгонялся и разгорался, и рождалась звезда. А звезды, мы все прекрасно знаем источники тепла,света, отсюда и жизни. Есть еще один факт возможности водорода, как-бы это не звучало, но водород сгорая в звезде превращался во все известные нам компоненты: гелий, кислород, железо и т.д.

Это все доказывает, что водород лежит в основе всего, хотя возможно мы еще не все знаем о водороде и о мире в котором живем.

Учебное видео о водороде


В видео рассказаны общие сведения о водороде, его физические и химические свойства.

Источник

Водород — самый маленький и распространённый элемент во Вселенной

Представьте себе, человек включает в сеть прибор, опускает его в колбу с водой и по всему дому загораются лампочки, работают электроплита и стиральная машина. И в результате работы прибора отходами является вода, которую завтра вновь можно использовать. Фантастика? Не совсем. В мировых лабораториях ученые работают над получением альтернативного топлива. И водородное топливо — одно из наиболее перспективных в этом плане.

Сейчас, когда вещества окружающего мира разложены на атомы, а человек стремится заглянуть внутрь ядра, водород и другие газы хорошо изучены. Древние алхимики, из-за невидимости газов, не учитывали участие воздуха в проводимых реакциях. И только со временем к ученым пришло понимание, что воздушные газы — полноценные участники химических реакций, и без их исследования картина мира будет неполной.

У истоков завтрашних изобретений стоят исследования ученых XVI-XVII вв и теория о флогистоне — некой горючей субстанции, что улетучивается из веществ при горении, смешивается с воздухом и не может быть выделена из него.

В 1703 году теория флогистона описана немецким ученым Георгом Шталем для объяснения процессов горения, восстановления и обжига.

Первооткрывателем водорода считают, Генри Кавендиша, который подробно исследовал вещество, названное им «горючий воздух». Профиль ученого можно увидеть на странице 72 учебника «Химия 8 класс» под редакцией Н.Е.Кузнецовой. Более точных портретов ученого к сожалению не осталось. Современники описывали его как очень скромного и странного человека.

Лавуазье во второй половине восемнадцатого века осуществили водный синтез водорода с помощью горячего железа, что доказало присутствие водорода в составе воды.

Водород (Hydrogenium) — рождающий воду. Обозначается латинской литерой Н. Вселенная на 75% состоит из водорода, и на остальные 93 природных элемента, присутствующих в таблице Менделеева приходятся остальные 25%. На Земле — его позиция скромнее, девятый по распространенности. Водород входит в состав воды, благодаря круговороту которой поддерживается жизнь на земле.

Физические свойства водорода

не обладает цветом,

не ощутим вкусовыми и обонятельными рецепторами человека ( NB! Помним, что пробовать в лаборатории ничего нельзя!)

кипит и плавится при отрицательных температурах. (-252,6 0С и -259,2 0С соответственно);

в сравнении с воздухом, водород легче практически в 14 раз;

из-за неполярности молекулы Н2, водород плохо растворим в воде,

некоторые металлы (палладий) могут абсорбировать атомарный водород с образованием гидридов металлов..

Если внимательно посмотреть на Периодическую таблицу Д.И.Менделеева на последнем форзаце учебника «Химия 8 класс» под редакцией Н.Е.Кузнецовой можно заметить что водород есть и в первой группе и в седьмой. Такое расположение обусловлено тем, что в одних условиях водород -донор электрона и реагирует как металл, а в других акцептор электрона и проявляет свойства неметаллов.

Формулы получения водорода

1. Реакция металлов с разбавленными кислотами:

Zn +2HCl → ZnCl2 +H2↑

Для получения водорода используется аппарат Киппа. Представлен на странице 73 учебника “Химия 8 класс” под редакцией Н.Е.Кузнецовой

2. Реакция щелочных и щелочноземельных металлов с водой:

2Na +2H2O → 2NaOH +H2↑

3. Реакции гидролиза гидридов:

NaH +H2O → NaOH +H2↑

СаH2 + 2Н2О = Са(ОН)2 + 2Н2↑

4.Реакции цинка, кремния или алюминия со щелочами:

2Al +2NaOH +6H2O → 2Na[Al(OH)4] +3H2↑

Si + 2NaOH + H2O → Na2SiO3 + 2H2

Zn +2KOH +2H2O → K2[Zn(OH)4] +H2↑

5. Электролиз воды.

2H2O → 2H2+О2

Не смотря на то, что в результате электролиза получается чистый водород, экономически этот способ самый дорогой.

1. Взаимодействие с галогенами.

При обычной температуре водород реагирует со фтором:
H2 + F2 = 2HF.

Яркий свет обеспечивает реакцию водорода с хлором с выделением хлороводорода, взаимодействие с бромом протекает не так активно, водород с йодом не реагирует до конца даже при высокой температуре.

2. Взаимодействие с кислородом.

Горение водорода в кислороде — экзотермическая реакция. Температура водородно-кислородного пламени достигает почти 3000 °С.

Для получения сероводорода пропускают водород через расплавленную серу:
H2 + S = H2S

4.Химические свойства водорода с оксидами металлов.

Благодаря способности водорода отдавать электроны, он восстанавливает многие металлы из их оксидов:
CuO + H2 = Cu + H2O.

5. Химические свойства металлов с водородом.

Если водород нагреть до высокой температуры, происходит реакция с щелочными и щелочноземельными металлами.

Источник

Водород во вселенной

ВОДОРОД ВО ВСЕЛЕННОЙ

Обычно, чтобы подчеркнуть значение того или иного элемента, говорят если бы его не было, то случилось бы то-то и то-то. Но, как правило, это не более чем риторический прием. А вот водорода может когда-нибудь действительно не стать, потому что он непрерывно сгорает в недрах звезд, превращаясь в инертный гелии. И когда запасы водорода иссякнут, жизнь во Вселенной станет невозможной — и потому, что погаснут солнца, и потому, что не станет воды…

Читайте также:  Виды вселенной телескопом хаббл

Водород и Вселенная

Когда-то люди обожествляли Солнце. Но теперь оно стало объектом точных исследований, и мы редко задумываемся о том, что само наше существование целиком и полностью зависит от происходящих на нем процессов.

Каждую секунду Солнце излучает в космическое пространство энергию, эквивалентную примерно 4 млн. т массы. Эта энергия рождается в ходе слияния четырех ядер водорода, протонов, в ядро гелия; реакция идет в несколько стадий, а ее суммарный результат записывается вот таким уравнением

4¹H⁺ → ⁴He²⁺ + 2e⁺ + 26,7 Мэв

Много это или мало — 26,7 Мэв на один элементарный акт? Очень много: при «сгорании» 1 г протонов выделяется в 20 млн. раз больше энергии, чем при сгорании 1 г каменного угля. На Земле такую реакцию еще никто не наблюдал: она идет при температуре и давлении, существующих лишь в недрах звезд и еще не освоенных человеком.

Мощность, эквивалентную ежесекундной убыли массы в 4 млн. т, невозможно представить: даже при мощнейшем термоядерном взрыве в энергию превращается всего около 1 кг вещества. Но если отнести всю излучаемую Солнцем энергию к его полной массе, то выяснится невероятное удельная мощность Солнца окажется ничтожно малой-много меньше, чем мощность такого «тепловыделяющего устройства», как сам человек. И расчеты показывают, что Солнце будет светить, не ослабевая, еще по меньшей мере 30 млрд. лет.

Наше Солнце по меньшей мере наполовину состоит из водорода. Всего на Солнце обнаружено 69 химических элементов, но водород — преобладает. Его в 5,1 раза больше, чем гелия, и в 10 тыс. раз (не по весу, а по числу атомов) больше, чем всех металлов, вместе взятых. Этот водород расходуется не только на производство энергии. В ходе термоядерных процессов из него образуются новые химические элементы, а ускоренные протоны выбрасываются в околосолнечное пространство.

Последнее явление, получившее название «солнечного ветра», было открыто сравнительно недавно во время исследования космического пространства с помощью искусственных спутников. Оказалось, что особенно сильные порывы этого «ветра» возникают во время хромосферных вспышек. Достигнув Земли, поток протонов, захваченный ее магнитным полем, вызывает полярные сияния и нарушает радиосвязь, а для космонавтов «солнечный ветер» представляет серьезную опасность. Но только ли этим ограничивается воздействие на Землю потока ядер солнечного водорода? По-видимому, нет. Во-первых, виток протонов рождает вторичное космическое излучение, достигающее поверхности Земли; во-вторых, магнитные бури могут влиять на процессы жизнедеятельности; в-третьих, захваченные магнитным полем Земли ядра водорода не могут не сказываться на ее массообмене с космосом.

Судите сами: сейчас в земной коре из каждых 100 атомов 17 —это атомы водорода. Но свободного водорода на Земле практически не существует: он входит в состав годы минералов, угля, нефти, живых существ… Только вулканические газы иногда содержат немного водорода, который в результате диффузии рассеивается в атмосфере. А так как средняя скорость теплового движения молекул водорода из-за их малой массы очень велика — она близка ко второй космической скорости,— то из слоев атмосферы эти молекулы улетают в космическое пространство.

Но если Земля теряет водород, то почему она не может его получать от того же Солнца? Раз «солнечный ветер» — это ядра водорода, которые захватываются магнитным полем Земли, то почему бы им на ней не остаться? Ведь в атмосфере Земли есть кислород; реагируя с залетевшими ядрами водорода, он свяжет их, и космический водород рано или поздно выпадет на поверхность планеты в виде обыкновенного дождя. Более того, расчет показывает, что масса водорода, содержащегося в воде всех земных океанов, морей, озер и рек, точно равна массе протонов, занесенных «солнечным ветром» за всю историю Земли. Что это — простое совпадение?

…Мы должны сознавать, что наше Солнце, наше водородное Солнце,— это лишь заурядная звезда во Вселенной, что существует неисчислимое множество подобных звезд, удаленных от Земли на сотни, тысячи и миллионы световых лет. И кто знает — может быть именно в диапазоне радиоизлучения межзвездного водорода (запомните— 21 сантиметр!) человечеству впервые удастся связаться с иноземными цивилизациями… Как говорится, поживем — увидим.

Вы читаете, статья на тему Водород во вселенной

Источник

Водород

Водород / Hydrogenium (H), 1

2,20 [1] (шкала Полинга)

Термодинамические свойства простого вещества Плотность (при н. у.)

0,0000899 (при 273 K (0 °C)) г/см³

Кристаллическая решётка простого вещества Структура решётки

(300 K) 0,1815 Вт/(м·К)

Водоро́д — первый элемент периодической системы элементов; обозначается символом H. Название представляет собой кальку с латинского: лат. Hydrogenium (от др.-греч. ὕδωρ — «вода» и γεννάω — «рождаю») — «порождающий воду». Широко распространён в природе. Катион (и ядро) самого распространённого изотопа водорода 1 H — протон.

Три изотопа водорода имеют собственные названия: 1 H — протий (Н), 2 H — дейтерий (D) и 3 H — тритий (радиоактивен) (T).

Содержание

История

Выделение горючего газа при взаимодействии кислот и металлов наблюдали в XVI и XVII веках на заре становления химии как науки. Прямо указывал на выделение его и Михаил Васильевич Ломоносов, но уже определённо сознавая, что это не флогистон. Английский физик и химик Генри Кавендиш в 1766 году исследовал этот газ и назвал его «горючим воздухом». При сжигании «горючий воздух» давал воду, но приверженность Кавендиша теории флогистона помешала ему сделать правильные выводы. Французский химик Антуан Лавуазье совместно с инженером Ж. Менье, используя специальные газометры, в 1783 г. осуществил синтез воды, а затем и её анализ, разложив водяной пар раскалённым железом. Таким образом он установил, что «горючий воздух» входит в состав воды и может быть из неё получен.

Читайте также:  Самое крепкое вещество во вселенной

Происхождение названия

Лавуазье дал водороду название hydrogène (от др.-греч. ὕδωρ — вода и γεννάω — рождаю) — «рождающий воду». Русское наименование «водород» предложил химик М. Ф. Соловьев в 1824 году — по аналогии с «кислородом» М. В. Ломоносова .

Распространённость

Во Вселенной

Водород — самый распространённый элемент во Вселенной [3] . На его долю приходится около 92 % всех атомов (около 8 % составляют атомы гелия, доля всех остальных вместе взятых элементов — менее 0,1 %). Таким образом, водород — основная составная часть звёзд и межзвёздного газа. В условиях звёздных температур (например, температура поверхности Солнца

6000 °C) водород существует в виде плазмы, в межзвёздном пространстве этот элемент существует в виде отдельных молекул, атомов и ионов и может образовывать молекулярные облака, значительно различающиеся по размерам, плотности и температуре.

Земная кора и живые организмы

Массовая доля водорода в земной коре составляет 1 % — это десятый по распространённости элемент. Однако его роль в природе определяется не массой, а числом атомов, доля которых среди остальных элементов составляет 17 % (второе место после кислорода, доля атомов которого равна

52 %). Поэтому значение водорода в химических процессах, происходящих на Земле, почти так же велико, как и кислорода. В отличие от кислорода, существующего на Земле и в связанном, и в свободном состояниях, практически весь водород на Земле находится в виде соединений; лишь в очень незначительном количестве водород в виде простого вещества содержится в атмосфере (0,00005 % по объёму).

Водород входит в состав практически всех органических веществ и присутствует во всех живых клетках. В живых клетках по числу атомов на водород приходится почти 50 %.

Получение

В промышленности

  • Электролизводных растворов солей:

  • Пропускание паров воды над раскалённым коксом при температуре около 1000 °C:

  • Конверсия с водяным паром при 1000 °C:

  • Каталитическое окисление кислородом:

  • Крекинг и риформинг углеводородов в процессе переработки нефти.
  • Из природного газа.

В лаборатории

  • Действие разбавленных кислот на металлы. Для проведения такой реакции чаще всего используют цинк и разбавленную серную кислоту:

  • Взаимодействие кальция с водой:

  • Гидролизгидридов:

  • Действие щелочей на цинк или алюминий:

  • С помощью электролиза. При электролизе водных растворов щелочей или кислот на катоде происходит выделение водорода, например:

Физические свойства

Водород — самый лёгкий газ, он легче воздуха в 14,5 раз. Очевидно, что чем меньше масса молекул, тем выше их скорость при одной и той же температуре. Как самые лёгкие, молекулы водорода движутся быстрее молекул любого другого газа и тем самым быстрее могут передавать теплоту от одного тела к другому. Отсюда следует, что водород обладает самой высокой теплопроводностью среди газообразных веществ. Его теплопроводность примерно в семь раз выше теплопроводности воздуха.

Молекула водорода двухатомна — Н2. При нормальных условиях — это газ без цвета, запаха и вкуса. Плотность 0,08987 г/л (н. у.), температура кипения −252,76 °C, удельная теплота сгорания 120,9·10 6 Дж/кг, малорастворим в воде — 18,8 мл/л.

Водород хорошо растворим во многих металлах (Ni, Pt, Pd и др.), особенно в палладии (850 объёмов H2 на 1 объём Pd). С растворимостью водорода в металлах связана его способность диффундировать через них; диффузия через углеродистый сплав (например, сталь) иногда сопровождается разрушением сплава вследствие взаимодействия водорода с углеродом (так называемая декарбонизация). Практически не растворим в серебре.

Жидкий водород существует в очень узком интервале температур от −252,76 до −259,2 °C. Это бесцветная жидкость, очень лёгкая (плотность при −253 °C 0,0708 г/см³) и текучая (вязкость при −253 °C 13,8 сП). Критические параметры водорода очень низкие: температура −240,2 °C и давление 12,8 атм. Этим объясняются трудности при ожижении водорода. В жидком состоянии равновесный водород состоит из 99,79 % пара-Н2, 0,21 % орто-Н2.

Твердый водород, температура плавления −259,2 °C, плотность 0,0807 г/см³ (при −262 °C) — снегоподобная масса, кристаллы гексагональной сингонии, пространственная группа P6/mmc, параметры ячейки a = 0,378 нм и c = 0,6167 нм. При высоком давлении водород переходит в металлическое состояние.

Молекулярный водород существует в двух спиновых формах (модификациях) — в виде орто- и параводорода. В молекуле ортоводорода o-H2 (т. пл. −259,10 °C, т. кип. −252,56 °C) ядерные спины направлены одинаково (параллельны), а у параводорода p-H2 (т. пл. −259,32 °C, т. кип. −252,89 °C) — противоположно друг другу (антипараллельны). Равновесная смесь o-H2 и p-H2 при заданной температуре называется равновесный водород e-H2.

Разделить модификации водорода можно адсорбцией на активном угле при температуре жидкого азота. При очень низких температурах равновесие между ортоводородом и параводородом почти нацело сдвинуто в сторону последнего. При 80 К соотношение форм приблизительно 1:1. Десорбированный параводород при нагревании превращается в ортоводород вплоть до образования равновесной при комнатной температуре смеси (орто-пара: 75:25). Без катализатора превращение происходит медленно (в условиях межзвёздной среды — с характерными временами вплоть до космологических), что даёт возможность изучить свойства отдельных модификаций.

Изотопы

Водород встречается в виде трёх изотопов, которые имеют индивидуальные названия: 1 H — протий (Н), 2 Н — дейтерий (D), 3 Н — тритий (T; радиоактивный).

Протий и дейтерий являются стабильными изотопами с массовыми числами 1 и 2. Содержание их в природе соответственно составляет 99,9885 ± 0,0070 % и 0,0115 ± 0,0070 % [4] . Это соотношение может незначительно меняться в зависимости от источника и способа получения водорода.

Изотоп водорода 3 Н (тритий) нестабилен. Его период полураспада составляет 12,32 лет [4] . Тритий содержится в природе в очень малых количествах.

В литературе [4] также приводятся данные об изотопах водорода с массовыми числами 4—7 и периодами полураспада 10 −22 —10 −23 с.

Природный водород состоит из молекул H2 и HD (дейтероводород) в соотношении 3200:1. Содержание чистого дейтерийного водорода D2 ещё меньше. Отношение концентраций HD и D2, примерно, 6400:1.

Из всех изотопов химических элементов физические и химические свойства изотопов водорода отличаются друг от друга наиболее сильно. Это связано с наибольшим относительным изменением масс атомов [5] .

Читайте также:  Вселенная это клетка большого организма
Температура
плавления,
K
Температура
кипения,
K
Тройная
точка,
K / kPa
Критическая
точка,
K / kPa
Плотность
жидкий / газ,
кг/м³
H2 13,96 20,39 13,96 / 7,3 32,98 / 1,31 70,811 / 1,316
HD 16,65 22,13 16,6 / 12,8 35,91 / 1,48 114,0 / 1,802
HT 22,92 17,63 / 17,7 37,13 / 1,57 158,62 / 2,31
D2 18,65 23,67 18,73 / 17,1 38,35 / 1,67 162,50 / 2,23
DT 24.38 19,71 / 19,4 39,42 / 1,77 211,54 / 2,694
T2 20,63 25,04 20,62 / 21,6 40,44 / 1,85 260,17 / 3,136

Дейтерий и тритий также имеют орто- и парамодификации: p-D2, o-D2, p-T2, o-T2. Гетероизотопный водород (HD, HT, DT) не имеют орто- и парамодификаций.

Свойства изотопов

Свойства изотопов водорода представлены в таблице [4] [6] .

Изотоп Z N Масса, а. е. м. Период полураспада Спин Содержание в природе, % Тип и энергия распада
1 H 1 0 1,007 825 032 07(10) стабилен 1 2 + 99,9885(70)
2 H 1 1 2,014 101 777 8(4) стабилен 1 + 0,0115(70)
3 H 1 2 3,016 049 277 7(25) 12,32(2) года 1 2 + β − 18,591(1) кэВ
4 H 1 3 4,027 81(11) 1,39(10)·10 −22 с 2 − -n 23,48(10) МэВ
5 H 1 4 5,035 31(11) более 9,1·10 −22 с ( 1 2 + ) -nn 21,51(11) МэВ
6 H 1 5 6,044 94(28) 2,90(70)·10 −22 с 2 − −3n 24,27(26) МэВ
7 H 1 6 7,052 75(108) 2,3(6)·10 −23 с 1 2 + -nn 23,03(101) МэВ

В круглых скобках приведено среднеквадратическое отклонение значения в единицах последнего разряда соответствующего числа.

Свойства ядра 1 H позволяют широко использовать ЯМР-спектроскопию в анализе органических веществ.

Химические свойства

Молекулы водорода достаточно прочны, и для того, чтобы водород мог вступить в реакцию, должна быть затрачена большая энергия:

Поэтому при обычных температурах водород реагирует только с очень активными металлами, например с кальцием, образуя гидрид кальция:

и с единственным неметаллом — фтором, образуя фтороводород:

С большинством же металлов и неметаллов водород реагирует при повышенной температуре или при другом воздействии, например при освещении:

Он может «отнимать» кислород от некоторых оксидов, например:

Записанное уравнение отражает восстановительные свойства водорода.

С галогенами образует галогеноводороды:

, реакция протекает со взрывом в темноте и при любой температуре, , реакция протекает со взрывом, только на свету.

С сажей взаимодействует при сильном нагревании:

Взаимодействие со щелочными и щёлочноземельными металлами

При взаимодействии с активными металлами водород образует гидриды:

Гидриды — солеобразные, твёрдые вещества, легко гидролизуются:

Взаимодействие с оксидами металлов (как правило, d-элементов)

Гидрирование органических соединений

Молекулярный водород широко применяется в органическом синтезе для восстановления органических соединений. Эти процессы называют реакциями гидрирования. Эти реакции проводят в присутствии катализатора при повышенных давлении и температуре. Катализатор может быть как гомогенным (напр. Катализатор Уилкинсона), так и гетерогенным (напр. никель Ренея, палладий на угле).

Так, в частности, при каталитическом гидрировании ненасыщенных соединений, таких как алкены и алкины, образуются насыщенные соединения — алканы.

Геохимия водорода

На Земле содержание водорода понижено по сравнению с Солнцем, планетами-гигантами и первичными метеоритами, из чего следует, что во время образования Земля была значительно дегазирована и водород вместе с другими летучими элементами покинул планету во время аккреции или вскоре после неё.

Свободный водород H2 относительно редко встречается в земных газах, но в виде воды он принимает исключительно важное участие в геохимических процессах.

В состав минералов водород может входить в виде иона аммония, гидроксил-иона и кристаллической воды.

В атмосфере водород непрерывно образуется в результате разложения воды солнечным излучением [7] . Имея малую массу, молекулы водорода обладают высокой скоростью диффузионного движения (она близка ко второй космической скорости) и, попадая в верхние слои атмосферы, могут улететь в космическое пространство.

Меры предосторожности

Водород при смеси с воздухом образует взрывоопасную смесь — так называемый гремучий газ. Наибольшую взрывоопасность этот газ имеет при объёмном отношении водорода и кислорода 2:1, или водорода и воздуха приближённо 2:5, так как в воздухе кислорода содержится примерно 21 %. Также водород пожароопасен. Жидкий водород при попадании на кожу может вызвать сильное обморожение.

Считается, что взрывоопасные концентрации водорода с кислородом возникают от 4 % до 96 % объёмных. При смеси с воздухом от 4 % до 75 (74) % по объему. Такие цифры фигурируют сейчас в большинстве справочников, и ими вполне можно пользоваться для ориентировочных оценок. Однако, следует иметь в виду, что более поздние исследования (примерно конец 80-х) выявили, что водород в больших объёмах может быть взрывоопасен и при меньшей концентрации. Чем больше объём, тем меньшая концентрация водорода опасна.

Источник этой широко растиражированной ошибки в том, что взрывоопасность исследовалась в лабораториях на малых объёмах. Поскольку реакция водорода с кислородом — это цепная химическая реакция, которая проходит по свободнорадикальному механизму, «гибель» свободных радикалов на стенках (или, скажем, поверхности пылинок) критична для продолжения цепочки. В случаях, когда возможно создание «пограничных» концентраций в больших объёмах (помещения, ангары, цеха), следует иметь в виду, что реально взрывоопасная концентрация может отличаться от 4 % как в большую, так и в меньшую стороны.

Экономика

Стоимость водорода при крупнооптовых поставках колеблется в диапазоне 2-5$ за кг [8] . В небольших количествах перевозится в стальных баллонах зелёного или тёмно-зелёного цвета.

Применение

Атомарный водород используется для атомно-водородной сварки.

Химическая промышленность

Пищевая промышленность

  • При производстве маргарина из жидких растительных масел.
  • Зарегистрирован в качестве пищевой добавкиE949 (упаковочный газ, класс «Прочие»). Входит в список пищевых добавок, допустимых к применению в пищевой промышленности Российской Федерации в качестве вспомогательного средства для производства пищевой продукции. [источник не указан 658 дней]

Авиационная промышленность

Водород очень лёгок и в воздухе всегда поднимается вверх. Когда-то дирижабли и воздушные шары наполняли водородом. Но в 30-х гг. XX в. произошло несколько катастроф, в ходе которых дирижабли взрывались и сгорали. В наше время дирижабли наполняют гелием, несмотря на его существенно более высокую стоимость.

Топливо

Водород используют в качестве ракетного топлива.

Ведутся исследования по применению водорода как топлива для легковых и грузовых автомобилей. Водородные двигатели не загрязняют окружающую среду и выделяют только водяной пар.

В водородно-кислородных топливных элементах используется водород для непосредственного преобразования энергии химической реакции в электрическую.

Источник

Adblock
detector