Меню

Солнечные элементы для космоса

Космические солнечные модули

Не секрет, что в русле постоянной борьбы за более продуктивную, экологическую и дешевую энергию, человечество, все чаще, прибегает к помощи альтернативных источников получения драгоценной энергии. Во многих странах, достаточно обширное количество жителей используют солнечные модули для снабжения жилища электроэнергией.

Часть из них пришли к такому выводу благодаря трудным расчетам по экономии материальных средств, а некоторых сделать такой ответственный шаг вынудили обстоятельства, одно из которых труднодоступное географическое положение, обуславливающее отсутствие надежных коммуникаций. Но не только в таких труднодоступных местах нужны солнечные батареи. Существуют рубежи намного отдаленнее, нежели край земли – это космос. Солнечная батарея в космосе является единственным источником выработки необходимого количества электроэнергии.

Основы космической солнечной энергетики

Идея применять солнечные модули в космосе впервые появилась больше полувека назад, во время первых запусков искусственных спутников земли. В тот период, в СССР, профессор и специалист в области физики, особенно в сфере электричества – Николай Степанович Лидоренко, обосновал необходимость применения бесконечных источников энергии на космических аппаратах. Такой энергией могла быть только энергия солнца, которая добывалась с помощью солнечных батарей.

В настоящее время все космические станции функционируют исключительно за счет солнечной энергии.

Большим помощником в этом деле является сам космос, так как солнечные лучи, так необходимые для процесса фотосинтеза, который солнечные модули используют, в избытке имеются в космическом пространстве, и нет никаких помех для их потребления.

Минусом использования солнечных батарей на околоземной орбите, может служить влияние радиации на материал изготовления фотопластин. Благодаря такому негативному влияния происходит изменение структуры солнечных элементов, что влечет снижение выработки электроэнергии.

Фантастические электростанции

В научных лабораториях всей земли, в настоящее время, происходит схожая задача – поиск бесплатной электроэнергии от солнца. Только не в масштабах отдельного дома или города, а в размерах всей планеты. Суть этой работы состоит в том, чтобы создать огромные по своим размерам, а соответственно и выработкам энергии, солнечные модули.

Площадь таких модулей огромна и размещение их на поверхности земли повлечет много трудностей, таких как:

  • значительные и свободные площади для установки приемников света,
  • влияние метеоусловий на и КПД модулей,
  • затраты на обслуживание и чистку солнечных панелей.

Все эти отрицательные аспекты исключают установку подобного монументального сооружения на земле. Но выход есть. Можно установить гигантские солнечные модули на околоземной орбите. При воплощении в жизнь такой идеи, человечество получает солнечный источник энергии, который всегда находится под воздействием солнечных лучей, никогда не потребует чистки от снега, и самое главное не будет занимать полезное пространство на земле.

Конечно же, тот, кто первым установит солнечные батареи для космоса, станет в будущем диктовать свои условия в мировой энергетике. Не секрет, что, запасы полезных ископаемых на нашей земле не просто не бесконечен, а наоборот с каждым днем напоминает о том, что скоро человечеству придется переходить на альтернативные источники в принудительном порядке. Именно поэтому, разработки космических солнечных модулей на земной орбите стоит в списке первоочередных задач энергетиков и специалистов, проектирующих электростанции будущего.

Солнечные модули: проблемы размещения на орбите земли

Трудности рождения таких электростанций, не только в установке, доставке и базировании солнечных модулей на околоземной орбите. Наибольшие проблемы вызывает передача, выработанной солнечными модулями, электрического тока потребителю, то есть на землю. Провода, конечно же, не протянешь, да и перевозить в контейнере не получится. Существуют почти нереальные технологии передачи энергии на расстояния без осязаемых материалов. Но такие технологии вызывают много противоречивых гипотез в научном мире.

Во первых, столь сильное излучение будет негативно влиять на обширную область приема сигнала, то есть будет происходить облучение значительного куска нашей планеты. А если таких космических станций со временем станет очень много? Это может привести к облучению всей поверхности планеты, результатом чего будут непредсказуемые последствия.

Во вторых, негативным моментом может быть, частичное разрушение верхних слоев атмосферы и озонового слоя, в местах передачи энергии от электростанции к приемнику. Последствия такого рода, может предположить даже ребенок.

В довесок ко всему, существуют множество нюансов различного характера, увеличивающих отрицательные моменты, и отдаляющих момент запуска подобных устройств. Таких внештатных ситуаций может быть множество, от трудности ремонта панелей, в случае непредвиденной поломки или столкновения с космическим телом, до банальной проблемы – как утилизировать столь необычное сооружение, после окончания срока его эксплуатации.

Читайте также:  Обьяснить что такое космос

Несмотря на все негативные моменты, деваться человечеству, как говориться, некуда. Солнечная энергия, на сегодняшний день, единственный источник энергии, который может в теории покрыть растущие потребности людей в электричестве. Ни один из существующих ныне источников энергии на земле, не может сравниться своими будущими перспективами с этим уникальным явлением.

Приблизительные сроки внедрения

Солнечная космическая электростанция давно перестала быть теоретическим вопросом. На 2040 год уже намечен первый пуск электростанции на земную орбиту. Конечно, это только пробная модель, и она далека от тех глобальных сооружений, которые планируются построить в дальнейшем. Суть такого запуска – посмотреть на практике – как будет работать такая электростанция в рабочих условиях. Страна, которая взяла на себя столь нелегкую миссию – Япония. Предполагаемая площадь батарей, теоретически, должна составить около четырех квадратных километров.

Если эксперименты покажут, что такое явление как солнечная электростанция может существовать, то основное направление солнечной энергетики получит четкий путь по освоению подобных изобретений. Если экономический аспект, не сможет остановить все дело на начальном этапе. Дело в том, что по теоретическим подсчетам, для того, чтобы вывести на орбиту полноценную солнечную электростанцию, необходимо более двухсот запусков грузовых ракетоносителей. К сведению, стоимость одного запуска тяжелого грузовика, исходя из существующей статистики, составляет примерно 0,5 – 1 миллиард долларов. Арифметика проста, и результаты ее не утешительны.

Узнайте больше о самовозобновляемой и бесплатной энергии будущего. Солнечные батареи в действии.

Получающаяся сумма огромна, и она пойдет только на доставку разобранных элементов на орбиту, а необходимо еще собрать весь конструктор.

Подводя итог всему сказанному, можно отметить, что создание космической солнечной электростанции дело времени, но построить такую конструкцию под силу исключительно сверхдержавам, которые смогут осилить весь груз экономического бремени от реализации процесса.

Не секрет, что в русле постоянной борьбы за более продуктивную, экологическую и дешевую энергию, человечество, все чаще, прибегает к помощи альтернативных источников получения драгоценной энергии. Во многих странах, достаточно обширное количество жителей используют солнечные модули для снабжения жилища электроэнергией.

Часть из них пришли к такому выводу благодаря трудным расчетам по экономии материальных средств, а некоторых сделать такой ответственный шаг вынудили обстоятельства, одно из которых труднодоступное географическое положение, обуславливающее отсутствие надежных коммуникаций. Но не только в таких труднодоступных местах нужны солнечные батареи. Существуют рубежи намного отдаленнее, нежели край земли – это космос. Солнечная батарея в космосе является единственным источником выработки необходимого количества электроэнергии.

Источник

В чем преимущества использования солнечных батарей в космосе

Как только человек научился выводить на орбиту космические аппараты, встал вопрос о возможности их долговременного использования. Корректировка орбиты, передача данных, снабжение электричеством спутников и жилых станций требовало наличия энергии. А получать ее круглосуточно за пределами земли можно было только от солнца. Так в космосе появились солнечные батареи, первые из которых были созданы почти одновременно с началом освоения околоземного пространства.

Создание и использование фотоэлектрических панелей для внеземных аппаратов

«Пионерами» разработки фотовольтаики данного типа стали инженеры СССР. Для космических кораблей «Восход», «Восток» и орбитальных станций «Салют» были использованы гелиопанели, созданные группой физика Н.С.Лидоренко. Он же произвел точные математические расчеты эффективности солнечных батарей в космосе для технологий того времени.

На тот момент КПД ячеек на базе кремния едва достигал 8-10%, однако конструкция модулей отличалась высокой надежностью. Основные идеи и технологические решения советских ученых лежат в основе и нынешней космической фотовольтаики.

За прошедшие с той поры 60 лет подобными панелями были оснащены:

  • более 250 межпланетных станций (единственное исключение – 4 аппарата, запущенных в дальний космос и получающих энергию от радиоактивных элементов);
  • свыше 3300 спутников, включая быстро увеличивающуюся группу «StarLink» Илона Маска;
  • 72 лунохода, длительное функционирование которых требовало постоянного притока энергии;
  • 14 марсоходов, включая американский и китайский аппараты, направленные к Марсу в 2020 году.
Читайте также:  Зачем человеку космос доклад

Достоинства и недостатки солнечных батарей в космосе

Как и любое другое высокотехнологичное оборудование, фотоэлектрические панели для внеземного пространства обладают достоинствами и недостатками.

  • за пределами земли нет атмосферы, дождей и туч, поток солнечного излучения постоянен, а потому панели генерируют ток круглосуточно (исключение – аппараты на Луне и Марсе);
  • инсоляция в безвоздушном пространстве значительно выше, что увеличивает эффективность использования солнечных батарей в космосе;
  • у космической фотовольтаики КПД достигает 40-45%.
  • из-за огромных температурных перепадов, микро метеоритов и жесткого космического излучения панели быстрее деградируют;
  • солнечные батареи для космоса обходятся в немалые суммы сами по себе, а их доставка на орбиту требует дополнительные 2-2,5 тысячи долларов за каждый килограмм массы;
  • неблагоприятные условия функционирование вынуждают использовать многоуровневую защиту всех элементов модулей, что делает их еще дороже и массивнее.

Тем не менее, достойной альтернативы гелио панелям за пределами планеты для выполнения тех же задач пока не существует.

Космические СЭС будущего

Еще одной невероятно перспективной сферой применения солнечных батарей в космосе является создание в ближайшем будущем масштабных орбитальных электростанций. Причина такого интереса к данному проекту в следующем:

  1. Мощность потока излучения нашего светила, направленного в сторону земли, в тысячи раз превосходит всю потребляемую человечеством энергию.
  2. Размещение любого количества гелио панелей на орбите ничем не ограничено. Теоретически из них можно образовать огромные поля площадью с миллионы квадратных километров.
  3. Генерация энергии будет происходить в режиме 365/24/7, с возможностью передачи ее на землю по микроволновому лучу.

В настоящий момент единственным препятствием реализации такого проекта является его запредельная стоимость. Однако в будущем, с появлением технологий вроде «космического лифта», вывод на орбиту грузов подешевеет примерно в 1000 раз. И тогда создание подобных «СЭС будущего» может превратиться в реальность.

Какие солнечные батареи в космосе обеспечивают наибольшую эффективность?

Изначально космические панели создавались на базе монокристаллического кремния. Помимо низкой производительности, они имели и ряд других недостатков.

Сегодня в фотовольтаике для внеземного пространства используются исключительно тонкопленочные технологии. Основой ячеек являются композиты редкоземельных элементов типа CIGS, представляющие собой чередующиеся слои сульфидов галлия, индия и прочих редких металлов.

Это позволяет кардинально повысить поглощение фотонов разной длины волны, что увеличивает КПД и долговечность системы в несколько раз.

Такие солнечные батареи обходятся дороже, но в космической промышленности цена играет далеко не самую важную роль.

Источник

Журнал «Все о Космосе»

Солнечная батарея (панель)

Солнечная батарея на МКС

Солнечная батарея — несколько объединённых фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος , Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

История

Первые прототипы солнечных батарей были созданы итальянским фотохимиком армянского происхождения Джакомо Луиджи Чамичаном.

25 апреля 1954 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 году, в США был запущен первый спутник с солнечными батареями — Vanguard 1. Спустя всего пару месяцев, 15 мая 1958 года в СССР был запущен Спутник-3, также с использованием солнечных батарей.

Использование в космосе

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Читайте также:  Проект космос для окружающего мира

Эффективность фотоэлементов и модулей

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D ). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может быть менее 100 Вт/м². С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях.

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд.

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния.

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4х4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %, а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали фотоэлемент, использующий линзы Френеля с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 %. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46%.

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца.

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200-300 нм) светом (т. е. электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85%.

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях

Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые
Si (кристаллический) 24,7
Si (поликристаллический) 20,3
Si (тонкопленочная передача) 16,6
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие пленки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Производство

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определенное количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована.

Источник

Adblock
detector