Солнечный коллектор: описание, установка, устройство.
Содержание статьи
Солнечными коллекторами называют установки, предназначенные для сбора тепловой энергии солнца, используемой для нагрева теплоносителя. Как правило, их используют для отопления и горячего водоснабжения помещений. Основные объекты использования гелиоколлекторов – здания коммерческого назначения и частные дома.
Солнечный коллектор – своего рода уникальное устройство. Его покупка в будущем позволит избавиться от ежемесячных расходов на горячую воду и отопление. Однако в связи с его немалой стоимостью главное – не допустить ошибок при выборе соответствующего оборудования.
Следовательно, перед тем, как приобрести гелиоколлектор, необходимо располагать общей информацией о его видах, особенностях и принципах работы.
Преимущества солнечных коллекторов и гелиосистем Oventrop
Специфика применения
В отличие от теплогенераторов и тепловых насосов, преобразующих энергию из согретых солнцем грунтовых вод и воздушных масс, солнечные коллекторы работают от прямых солнечных лучей, воздействующих на их поверхность. Единственный нюанс гелиоколлекторов заключается лишь в том, что ночью они находятся в пассивном режиме.
На суточную производительность гелиоустановки влияют такие факторы, как:
- Продолжительность светового дня, которая в свою очередь зависит от географической широты региона и времени года. Так, например, в Центральной части России летом солнечный коллектор будет функционировать по максимуму, а зимой – по минимуму. Это связано не только с длительностью дня, но и изменением угла падения солнечных лучей на гелиопанели;
- Климатические особенности региона. Как правило, на территории нашей страны имеется множество участков, над которыми больше 200 дней в году солнце скрывается за слоями туч или за пеленой тумана. Несмотря на то, что гелиоколлектор может улавливать даже рассеянные солнечные лучи, в пасмурную погоду его продуктивность значительно уменьшается.
Принцип работы и особенности устройства
Главным элементом гелиоколлектора является адсорбер. Он представляет собой медную пластину с присоединенной к ней трубой. При поглощении энергии воздействующих на гелиосистему прямых солнечных лучей, адсорбирующий элемент моментально нагревается, передавая тепло циркулирующему по трубопроводу теплоносителю.
От типа поверхности коллектора зависит его способность отражать или поглощать солнечные лучи. Так, например, устройство с зеркальной поверхностью превосходно отражает свет и тепло, в то время как черная пластина полностью поглощает их. Следовательно, для наибольшей эффективности медную пластину адсорбера чаще всего покрывают черной краской.
Чтобы также повысить количество излучаемой от солнца тепловой энергии, необходимо грамотно выбрать прикрывающее адсорбер стекло. Для солнечных коллекторов применяют специальное стекло с антибликовым покрытием и минимальным процентом содержащегося в нем железа. Такое стекло отличается от обыкновенного не только сниженной долей отражаемого света, но и увеличивает прозрачность.
Кроме того, для предотвращения загрязнения стекла, что тоже снижает эффективность работы гелиоустановки, корпус коллектора полностью герметизируют, либо наполняют инертным газом.
При всем этом часть получаемой тепловой энергии пластина адсорбера отдает в окружающую среду, нагревая взаимодействующий с гелиосистемой воздух. Для снижения теплопотерь адсорбирующий элемент следует изолировать. Поиски максимально эффективных способов теплоизоляции и привели к появлению множества разновидностей солнечных коллекторов. Одними из распространенных видов являются плоские и трубчатые, или вакуумные.
Плоские солнечные коллекторы: устройство
Гелиоколлектор плоского типа состоит из алюминиевого короба, сверху которого установлено защитное стекло с абсорбционным слоем. Внутри корпуса расположены медные трубки, впускной и выпускной патрубки. Дно и стенки короба защищены самым надежным теплоизолирующим элементом – минеральной ватой.
Некоторые модели плоских коллекторов могут также иметь под стеклом слой пропиленгликоля, который выполняет функцию поглотителя солнечных лучей. Это увеличивает его КПД, обеспечивая оборудованию максимальную производительность вне зависимости от сезона.
Достоинства и недостатки плоских гелиоколлекторов
К главным преимуществам плоских солнечных коллекторов относят:
- Способность к самоочищению в случае выпадения осадков в виде снега или инея;
- Высокие показатели в соотношении «цена/качество», что характерно для южных регионов с теплым климатом;
- Высокий КПД при эксплуатации в летний сезон;
- Сравнительно невысокая стоимость в отличие от других гелиоконструкций.
Основными недостатками таких систем являются:
- Высокие теплопотери, обусловленные конструктивными признаками установок;
- Небольшой КПД при функционировании осенью и зимой;
- Сложности в ходе перевозки и монтажа гелиосистем;
- Максимальные затраты в случае выполнения ремонтных работ;
- Повышенная парусность гелиоустановки.
Сфера применения плоских солнечных коллекторов
Несмотря на недостатки, данный тип гелиосистем используется для сезонного нагрева горячей воды. Плоские гелиоколлекторы используются:
- Для горячего водоснабжения летнего душа;
- Для подогрева воды в бассейне до нужной температуры;
- Для обогрева теплиц.
Вакуумные гелиоколлекторы
Вакуумный солнечный коллектор – это высокотехнологичное комплексное устройство, предназначенное для сбора тепловой солнечной энергии и последующей ее переработки в тепловую энергию, которая используется в быту и промышленных сферах для обеспечения отопления, подогрева воды в системах водоснабжения. Солнечный вакуумный коллектор высокоэффективен и эргономичен, обладает высоким КПД даже в условиях слабой освещенности и низких температур, что дает возможность использовать систему в любое время года. Устройство позволяет перерабатывать в тепло инфракрасное излучение, проникающее сквозь облака и рассеянные лучи. Солнечные коллекторы Oventrop способны даже при отрицательных температурах окружающей среды нагреть воду до ста градусов Цельсия.
Сфера применения вакуумных солнечных коллекторов
Использование конструкции значительно снижает затраты на отопление в зимний период года и гарантирует бесплатный подогрев воды в летний период года. Солнечный коллектор активно поглощает солнечную энергию и улавливает 98% энергии, когда степень вакуума — 10 — . Системы устанавливают на фасадах, плоских или скатных крышах. При расположении в произвольных местах угол наклона должен находиться в пределах 15-75 0 . Срок эксплуатации – не менее двадцати лет.
Системы широко используются для:
- подогрева воды в бытовых и производственных водопроводах, бассейнах;
- работы отопительных индивидуальных систем;
- обогрев теплиц.
Коллекторы легко включаются в сети водо- и теплоснабжения. Для подключения системы используется станция Regusol X Duo с вмонтированным теплообменником и контроллером, которая благодаря послойному накоплению теплоносителя повышает эффективность всей энергосистемы.
Установка солнечного коллектора
От правильности установки коллектора напрямую зависит эффективность конструкции. Для избегания риска поднятия давления вследствие перегрева воды расчет солнечного коллектора выполняются исключительно в специальных программах. Расчеты производятся с учетом погодных условий в точке размещения коллектора и среднегодового расхода тепла. Мощность солнечного корректора вычисляется исходя из данных о площади, значения инсоляции системы и КПД коллектора.
Перед началом расчетов определяется, будет система круглогодичной или сезонной.
- Солнечные корректоры сезонного типа предполагают использование в теплый период года (середина апреля – середина октября). Данная конструкция состоит из бака накопителя и коллектора. Теплоносителем служит вода, которая замерзает при отрицательных температурах, поэтому использование ее в холодную часть года невозможно.
- Круглогодичные системы могут эффективно использоваться вне зависимости от температурного режима окружающей среды. В конструкции используется незамерзающая эфирная жидкость, которая обеспечивает высокий КПД солнечного коллектора даже в самые холодные дни года.
Вакуумные солнечные коллекторы при грамотной установке и монтаже покрывают до 60% среднестатистической семьи в горячей воде и обеспечивают отопление в период от второй половины весны до середины осени. Например, при установке системы в средних широтах России коллектор площадью в два квадратных метра обеспечивает ежедневный нагрев ста литров воды до 40-60 0 .
Эффективность установки в летний период года значительно выше. За один ясный световой день 1 м 2 коллектора будет прогревать около восьмидесяти литров воды до температуры + 65 0 . Среднегодовая производительность солнечного коллектора с поглощающей площадью в 3м 2 будет состоять в диапазоне 500-700 кВт/ч на 1м 2 .
Устройство вакуумного солнечного коллектора
Компания Oventrop предлагает вакуумные солнечные коллекторы с тепловой трубкой. Системы с тепловой трубкой конструктивно напоминают термос: в стеклянную/металлическую трубку большего диаметра вставлена другая, меньшего диаметра. Пространство между ними вакуумированно, что обеспечивает максимально эффективную теплоизоляцию от воздействия внешних температур и минимальные потери на излучение. Вакуумная прослойка позволяет сохранить до 95% поглощенной тепловой энергии.
Все вакуумированные трубки оборудованы внутри медными пластинами поглотителя с эффективно собирающим солнечную энергию гелиотитановым покрытием. Заполненная специальной эфирной жидкостью тепловая труба установлена под поглотителем и присоединена к расположенному в теплообменнике конденсатору. Полученная поглотителем солнечная энергия превращает жидкость в пары, которые поднимаются в конденсатор и отдают тепло коллектору, конденсируется и возвращается в нижнюю часть колбы. Благодаря цикличности создается непрерывный процесс теплообмена.
Система способна вырабатывать значительные температуры и обеспечивает высокий КПД даже при слабой освещенности и t -30 — -45 0 С (в зависимости от вида коллектора с трубками из стекла или металла). Вакуумные солнечные коллекторы просты и недороги в эксплуатации. Специальные соединения конструкции позволяют заменять либо поворачивать трубки в заполненной находящейся под давлением установке.
В компании Oventrop представлены в наличии плоские и вакуумные (трубчатые) солнечные коллекторы и системы для гелиоустановок. Для дополнительной консультации по техническим характеристикам товара Вы можете связаться с нашим менеджером по телефону, указанному в разделе «Контакты».
Источник
Солнечные коллекторы энергия солнца
Добрый день дорогие читатели, Зеленая планета вместе с вами продолжает открывать тему — альтернативные источники энергии , и сегодня мы расскажем об использовании солнечной энергии для получения тепла, с помощью солнечных тепловых коллекторов.
Что такое солнечные коллекторы?
Использование солнечной энергии начинается с тепловых коллекторов. Солнечными тепловыми коллекторами называют устройства, в которых происходит преобразование света в тепло с помощью специальных элементов – поглотителей излучения.
Такие коллекторы не способны непосредственно производить электроэнергию, как полупроводниковые солнечные батареи. Они предназначены лишь для нагрева жидкости – теплоносителя и с успехом используются в системах снабжения горячей водой и отопления жилья. Также они используются и в солнечных электростанциях как основные элементы.
Виды солнечных тепловых коллекторов
Коллекторы солнечные подразделяются на два вида:
- Плоские
- Вакуумные
1. Плоский солнечный коллектор
Плоский коллектор представляет собой обычный приёмник солнечного тепла, состоящий из плоского резервуара-поглотителя излучения, надёжно упакованного в теплоизолированный корпус с прозрачной поверхностью. Прозрачная сторона плоского коллектора должна быть обращена к солнцу, и чем перпендикулярнее направление хода световых лучей к его поверхности, тем эффективнее работает коллектор, выше его КПД.
Большую роль в устройстве плоского коллектора играет покрытие теплоприемника. Чем ближе оно по цвету к абсолютно чёрному телу, тем интенсивнее поглощение и преобразование солнечного излучения в тепло, меньше отражение. Технология производства этих покрытий постоянно совершенствуется, пройдя путь промышленной эволюции от обычных чёрных красителей до селективного покрытия — чёрного никеля. Также важен прозрачный экран солнечной стороны. Надёжнее его изготавливать или из прочного закалённого стекла, или поликарбоната.
Резервуар плоского коллектора связан трубчатыми подводами теплоносителя с системой отопления, циркуляция жидкости в которой обеспечивается насосом.
Как корпус теплоприемника, так и теплоотводящие трубки должны быть надёжно защищены от потерь тепла. Для этой цели можно с успехом использовать различные теплоизолирующие материалы, выпускаемые современной промышленностью.
Вакуумный солнечный коллектор
Вакуумные солнечные коллекторы — это вид коллекторов, которые представляют собой более сложное техническое устройство с высоким КПД. Основными элементами коллектора являются тепловые трубки, по конструкции схожие с бытовым термосом. Отличие лишь в том, что наружная сторона каждой колбы — трубки прозрачна, а на внутреннюю её поверхность нанесено светопоглощающее покрытие.
В пространстве между наружной и внутренней поверхностями создаётся неглубокий вакуум, который и предохраняет весь коллектор от возвратных потерь тепла за счёт конвекции. Такая конструкция теплоприемника позволяет снизить потери при преобразовании энергии до 5%. Это очень важно для тех случаев, когда тепловая система работает в условиях недостаточного освещения или низкой температуры окружающего воздуха.
Солнечные системы теплоснабжения.
Используя отдельные коллекторы, собирается тепловой блок требуемой мощности. При увеличении площади покрытия возможен практически бесконечный рост производительности таких солнечных батарей.
Нагретый теплоноситель из коллекторов закачивается в бак – гидроаккумулятор, из которого производится забор горячей воды потребителями. При коротком отопительном контуре возможна естественная циркуляция воды в магистрали, что дополнительно повышает общий КПД системы. В более сложных системах циркуляционные потоки создаёт насос.
Традиционное солнечное теплоснабжение реализуется в двух вариантах систем:
• Одноконтурные системы, в которых вода непосредственно из коллекторов поступает в тепловую магистраль;
• Двухконтурные системы, где в контуре коллекторов циркулирует теплоноситель, отдающий в теплообменнике энергию водяному контуру.
Двухконтурные системы солнечного теплоснабжения хороши тем, что в условиях низких температур расположенный вне здания первый контур с коллекторами может быть заполнен незамерзающей жидкостью. В этом случае ночные холода системе не страшны.
Преобразование энергии солнца в электроэнергию.
Используя солнечные коллекторы и параболические системы зеркал большой площади, можно производить нагрев теплоносителя до высокой температуры. Когда эта температура значительно превышает температуру кипения воды, возникают условия для работы паровой турбины. Так работают некоторые солнечные тепловые электростанции. Водяной пар под давлением вырывается из котла и, попадая в сопло турбины, вращает ротор электрогенератора.
Несколько по-иному устроены солнечные панели. За счёт внутреннего фотоэффекта в них излучение солнца непосредственно превращается в электроэнергию.
При наличии аккумуляторов большой накопительной способности электроэнергия может использоваться не только в дневное время, но и ночью. Устанавливать такие батареи можно везде, куда беспрепятственно проникает свет, но для средних широт в северном полушарии наилучшим местом является южная крыша дома.
Ещё одним видом является солнечная тепловая электростанция, использующая в своей конструкции двигатель Стирлинга. От двигателей внутреннего сгорания этот двигатель отличается простотой конструкции и всеядностью по отношению к источникам тепла. Экономичный, экологичный и долговечный, он имеет высокий КПД и вполне подходит для схем, использующих преобразование энергии солнца в механическую энергию, а затем уже и в электричество.
модель двигателя Стирлинга
Источником тепла для двигателя Стирлинга в солнечной электростанции может быть как горячий жидкий теплоноситель, так и разогретый в коллекторах воздух. Двигатель не имеет выхлопа, бесшумен и высокопроизводителен, как в генераторах с вращающимися элементами, так и с возвратно-поступательным движением магнитов.
Источник