Единственная звезда
Знаете ли вы, что единственной звездой в Солнечной системе является Солнце? Остальные объекты этой области Млечного пути относятся к полноценным и карликовым планетам, малым телам и фрагментам межзвездной пыли.
От энергии, излучаемой Солнцем, зависят условия на планетах. Именно благодаря центральной звезде Солнечной системы на Земле возникла и поддерживается жизнь.
Что такое звезда
Для того, чтобы узнать побольше о Солнце, для начала необходимо разобраться, что из себя представляют звезды. Этим термином обозначаются газовые шары значительных размеров, в ядре которых происходят процессы термоядерного синтеза. За счет этого они выделяют огромное количество энергии и являются одними из самых ярких объектов во Вселенной.
Образуются звезды из скоплений водорода, гелия и межзвездной пыли. Под воздействием сильнейшего гравитационного взаимодействия облако сжимается все сильней до тех пор, пока не наберет массу, достаточную для запуска термоядерной реакции гелиевого синтеза.
Каждая звезда проходит целый ряд эволюционных преобразований от момента рождения до гибели. Чем она старше, тем больше ее диаметр и масса и меньше запасов водородного топлива в ядре. Солнце и подобные ему проходят следующие стадии развития:
- Переменная звезда типа Т Тельца – молодая, источником энергии которой является не реакция термоядерного синтеза, а гравитационное сжатие.
- Желтый карлик (нынешнее состояние нашего Светила) – небольшая звезда с большими запасами водорода.
- Красный гигант – стареющая звезда с высокой светимостью, большими размерами, но малыми запасами водорода в ядре. Она холоднее Солнца и излучает в десятки раз меньше энергии. После полного исчерпания водорода в ядре разрастается за счет сжигания вещества в окружающем пространстве, что приводит к вырождению ядра и гелиевой вспышке.
- Белый карлик – конечная эволюционная стадия солнцеподобных объектов. Диаметром в сотни раз меньше нашего Светила, но в миллионы раз большей плотности.
Солнце
Основные параметры единственной звезды Солнечной системы:
- Средний диаметр – 1,4*10 6 км.
- Площадь поверхности – 6,1*10 18 кв. м.
- Масса – 1,99*10 30 кг.
- Средние температурные значения: на поверхности — 6050°С; в области короны – 1,5*10 6 С; в ядре – 16*10 6 С.
По химическому составу в Солнце преобладают два элемента – водород(73,5%) и гелий(25%). Остальная часть приходится на углерод, кислород, азот и остаточные доли металлов. Наше светило имеет три внутренние оболочки (ядро, лучистая и конвективная зоны) и три внешние (фотосфера, хромосфера и солнечная корона). Из ядра через все эти слои Солнца проходят потоки атомом водорода и гелия, которые ионизируются по пути и вырываются из её атмосферы в виде солнечного ветра.
Кроме ионизирующего излучения наше светило выделяет громадные количества тепла. Большая часть электромагнитного излучения попадает на поверхность Земли в диапазоне видимого света. Свет Солнца ответственен за процессы фотосинтеза и обогрев планеты. УФ-излучение задерживается в озоновом слое земной атмосферы, а гамма- и рентгеновские лучи практически не достигают нашей планеты. Солнечный ветер проникает в атмосферу, образуя северные сияния и магнитные возмущения.
Солнечная система
Планетарная система, сформировавшаяся вокруг Солнца, состоит из 8 планет с их многочисленными спутниками и кольцами, 5 карликовых планет, пояса астероидов, ледяного пояса Койпера и региона транснептуновых объектов. 99,9% массы Солнечной системы приходится на ее единственную звезду. Вторым по массе объектом системы является Юпитер.
Средние размеры Солнечной системы рассчитать крайне сложно. Если за конечную точку брать афелий последней планеты (Нептун), то ее радиус составляет 4,5*10 9 км. Наиболее удаленный от Солнца объект системы Седна расположен на расстоянии 143*10 9 км. Потоки солнечного ветра, по подсчетам ученых, проходят путь равный 90 а.е. Астрономы до сих пор не установили, какое из трех значений принимать за конечный размер Солнечной системы.
По предположениям некоторых исследователей космической пространства, Солнце может быть не единственной звездой Солнечной системы. Выдвинута гипотеза, что в 5*10 5 -10*10 5 а.е. от нее расположен звездный спутник – коричневый или красный карлик Немезида. Ее считают виновницей массовых вымираний живых существ на Земле — при приближении к Солнцу она гипотетически возмущает облако Оорта, усиливая приток комет в Солнечную систему. Однако, никто еще так и не сумел обнаружить Немезиду, поэтому ее существование пока лишь гипотеза.
Источник
Солнце
Масса Солнца составляет 99,9% массы всей Солнечной системы. Основными элементами, из которого она состоит, являются водород (73%) и гелий (25%). Из других элементов можно назвать железо, никель, азот, кислород, сера, кремний, углерод, магний, кальций, хром, неон. Плотность звезды невелика – 1,4 г/см 3 , а тип её – жёлтый карлик. Если сравнивать Солнце с Землёй, то соотношение диаметра будет 109:1, массы 333 000:1, а объёма 1 300 000:1. Возраст нашего светила — 4,57 миллиард лет.
Положение Солнца в нашей галактике (Млечный Путь) достаточно окраинное. Звезда расположилась посередине спиральных ветвей Персея и Стрельца. В районе нашего проживания обстановка спокойна в течение сотен миллионов лет. Центр галактики расположен примерно в 26000 световых лет, и наше светило облетает вокруг него со скоростью 220 – 240 км/сек за 225 – 250 млн. лет. Расположение Солнечной системы именно в этом месте способствовали возникновению жизни на Земле. Если бы мы находились ближе к центру галактики, спокойствие нарушали бы близкие звёзды-соседки.
Строение
Поверхность
Видимая поверхность Солнца называется фотосферой. Ее толщина около 300 км. При сильном увеличении можно увидеть, что фотосфера имеет гранулированную структуру. Вещество на Солнце (газ) постоянно перемещается, и в областях, занимаемыми гранулами, оно поднимается к поверхности, а в промежутках между ними — опускается. Над фотосферой во время солнечных затмений можно увидеть солнечную атмосферу, состоящую из хромосферы (небольшого слоя красноватого цвета, прилегающего к видимой поверхности) и солнечной короны — разряженной и горячей внешней оболочки. Температура тут достигает до 1 500 000 градусов.
Солнечные пятна
Это тёмные области на Солнце, температура которых ниже, чем температура окружающего вещества фотосферы. Поэтому эти участки выглядят темнее, а самые большие пятна можно увидеть невооружённым глазом. На данный момент с видимой земле стороны пятна выглядят так:
Внутри Солнца
Дальше вглубь распространяется конвекционная зона — зона, в которой энергия за счет конвекции переносится от центра к более высоким слоям, будто бы перемешиваясь. От центра Солнца к конвекционной зоне энергия переносится излучением. Однако каждый фотон затрачивает миллионы лет для того, чтобы пройти эту зону: свет многократно поглощается веществом и излучается вновь. В центре располагается плотное и горячее ядро, в котором и происходят ядерные реакции. Около ядра температура достигает до 15 000 000 градусов! Про внутреннее строение солнца много интересного можно узнать в этой статье.
Солнечный ветер
Солнечный ветер — непрерывный поток плазмы солнечного происхождения, распространяющийся от атмосферы Солнца и заполняющий собой Солнечную систему. Из-за высокой температуры солнечной короны, давление вышележащих слоев не может уравновесить давление вещества короны. Это вещество и выбрасывается в пространство в виде солнечного ветра, распространяясь на расстояние до 100 а.е а.е. — астрономическая единица1 астрономическая единица = 149 597 871 километра. Это среднее расстояние от Земли до Солнца .
На рисунке пустое поле в центре закрывает пространство в 32 раза больше Солнца. Диаметр изображения — половина диаметра орбиты Меркурия. Точки за Солнцем — звёзды.
Почему светит Солнце
Свечение Солнца – результат выделения огромной энергии, выделяемой в результате протекания термоядерной реакции в её ядре. Вещества тратится мало, энергии выделяется много (в миллионы раз больше, чем при обычном горении).
Раньше считалось, что Солнце светит из-за горения элементов, входящих в его состав. Но по приблизительным подсчетам, даже грубым, оно не может «выгорать» миллиарды лет, Солнце должно было потухнуть совсем давно, растеряв массу, тем самым нарушив гравитационное равновесие в системе планет. Но Солнце светит уже миллиарды лет и не собирается гаснуть в ближайшее время.
Солнечное затмение
Солнечное затмение — астрономическое явление, при котором Луна закрывает полностью или частично Солнце от человека на Земле. Во время затмения можно наблюдать солнечную корону.
Как возникло Солнце
В составе Солнца присутствует достаточно много золота и урана. Эти элементы появлялись в в ядрах ранних звёзд, а распространение их происходило из-за взрывов сверхновых. По основной теории Солнце и солнечная система сформировались из газопылевого облака, которое как раз и являлось остатком взрыва сверхновой звезды.
Известны несколько двойников нашей звезды. Они аналогичны по массе, светимости, возрасту, и температуре. Это 18 Скорпиона, 37 Близнецов, Бета Гончих Псов, HD 44594 и HIP56948.
Источник
Солнце — это. Единственная звезда Солнечной системы
Солнце — это центр нашей планетной системы, основной ее элемент, без которого не было бы ни Земли, ни жизни на ней. Наблюдением за звездой люди занимаются с древних времен. С тех пор наши знания о светиле значительно расширились, обогатились многочисленными сведениями о движении, внутренней структуре и природе этого космического объекта. Более того, изучение Солнца вносит огромный вклад в понимание устройства Вселенной в целом, особенно тех ее элементов, которые аналогичны по своей сути и принципам «работы».
Зарождение
Солнце — это объект, существующий, по человеческим меркам, очень давно. Его формирование началось примерно 5 миллиардов лет назад. Тогда на месте Солнечной системы находилось обширное молекулярное облако. Под воздействием сил гравитации в нем начали возникать завихрения, подобные земным смерчам. В центре одного из них вещество (в основном это был водород) начало уплотняться, и 4,5 млрд лет назад тут появилась молодая звезда, которая спустя еще продолжительный период времени получила имя Солнце. Вокруг него постепенно стали формироваться планеты — наш уголок Вселенной начал приобретать привычный для современного человека вид.
Желтый карлик
Солнце — это не уникальный объект. Его относят к классу желтых карликов, сравнительно небольших звезд главной последовательности. Срок «службы», отпущенный таким телам, составляет примерно 10 миллиардов лет. По меркам космоса, это совсем немного. Сейчас наше светило, можно сказать, в самом расцвете сил: еще не старое, уже не молодое — впереди еще полжизни.
Желтый карлик — это гигантский шар газа, источником света в котором являются термоядерные реакции, происходящие в ядре. В раскаленном сердце Солнца непрерывно идет процесс преобразования атомов водорода в атомы более тяжелых химических элементов. Пока эти реакции осуществляются, желтый карлик излучает свет и тепло.
Смерть звезды
Когда выгорит весь водород, ему на смену придет другое вещество — гелий. Произойдет это примерно через пять миллиардов лет. Исчерпание водорода знаменует наступление новой стадии в жизни звезды. Она превратится в красного гиганта. Солнце начнет расширяться и займет все пространство вплоть до орбиты нашей планеты. При этом температура его поверхности снизится. Еще примерно через миллиард лет весь гелий в ядре превратится в углерод, и звезда сбросит свои оболочки. На месте Солнечной системы останется белый карлик и окружающая его планетарная туманность. Таков жизненный путь всех звезд, подобных нашему светилу.
Внутреннее строение
Масса Солнца огромна. На ее долю приходится примерно 99% от массы всей планетной системы.
Температура в солнечной сердцевине достигает 15 млн Кельвинов. Здесь же самый высокий показатель плотности, другие внутренние области Солнца гораздо более разреженные. В таких условиях протекают реакции термоядерного синтеза, обеспечивающие энергией само светило и все его планеты. Ядро окружено зоной лучистого переноса, затем располагается зона конвекции. В этих структурах энергия при помощи двух разных процессов перемещается к поверхности Солнца.
Из ядра в фотосферу
Ядро граничит с зоной лучистой передачи. В ней энергия распространяется дальше через поглощение и излучение веществом квантов света. Это достаточно медленный процесс. Из ядра в фотосферу кванты света попадают за тысячи лет. По мере своего продвижения они двигаются то вперед, то назад, и достигают следующей зоны преобразованными.
Из зоны лучистого переноса энергия попадает в область конвекции. Здесь движение происходит по несколько иным принципам. Солнечное вещество в этой зоне перемешивается подобно кипящей жидкости: более горячие слои поднимаются к поверхности, остывшие же опускаются вглубь. Гамма кванты, образовавшиеся в ядре, в результате серии поглощений и излучений, становятся квантами видимого и инфракрасного света.
За зоной конвекции размещается фотосфера, или видимая поверхность Солнца. Здесь вновь энергия движется посредством лучистого переноса. Достигающие фотосферы горячие потоки из нижележащей области создают характерную гранулярную структуру, хорошо заметную практически на всех снимках светила.
Внешние оболочки
Выше фотосферы располагается хромосфера и корона. Эти слои гораздо менее яркие, поэтому с Земли они доступны для наблюдения только во время полного затмения. Магнитные вспышки на Солнце возникают именно в этих разреженных областях. Они, как и другие проявления активности нашего светила, вызывают большой интерес у ученых.
Причина возникновения вспышек — генерация магнитных полей. Механизм таких процессов требует внимательного изучения в том числе и потому, что солнечная активность приводит к возмущению межпланетной среды, а это оказывает непосредственное влияние на геомагнитные процессы на Земле. Воздействие светила проявляется в изменении численности животных, на него реагируют практически все системы человеческого организма. Активность Солнца сказывается на качестве радиосвязи, уровне грунтовых и поверхностных вод планеты, климатических изменениях. Поэтому изучение процессов, приводящих к ее увеличению или уменьшению, является одной из самых важных задач астрофизики. На сегодняшний день далеко не все вопросы, связанные с солнечной активностью, получили ответы.
Наблюдение с Земли
Солнце оказывает воздействие на все живые существа на планете. Изменение продолжительности светового дня, повышение и понижение температуры непосредственно зависят от положения Земли относительно светила.
Движение Солнца по небосводу подчинено определенным законам. Перемещается светило по эклиптике. Так называется годовой путь, который проходит Солнце. Эклиптика — это проекция плоскости земной орбиты на небесную сферу.
Движение светила нетрудно заметить, если понаблюдать за ним какое-то время. Точка, в которой происходит восход Солнца, перемещается. Это же характерно и для заката. Когда приходит зима, Солнце в полдень расположено гораздо ниже, чем в летнее время.
Эклиптика проходит через зодиакальные созвездия. Наблюдение за их смещением показывает, что ночью нельзя увидеть те небесные рисунки, в которых в данное время располагается светило. Любоваться получается лишь теми созвездиями, где Солнце гостило примерно полгода назад. Эклиптика наклонена к плоскости небесного экватора. Угол между ними составляет 23,5º.
Изменение склонения
На небесной сфере располагается так называемая точка Овна. В ней Солнце меняет свое склонение с южного на северное. Светило достигает этой точки каждый год в день весеннего равноденствия, 21 марта. Солнце летом поднимается гораздо выше, чем зимой. С этим связано изменение температурного режима и продолжительности светового дня. Когда приходит зима, Солнце в своем движении отклоняется от небесного экватора к Северному полюсу, а летом — к Южному.
Календарь
Светило располагается точно на линии небесного экватора два раза в год: в дни осеннего и весеннего равноденствия. В астрономии время, которое требуется Солнцу для перемещения из точки Овна и возвращение к ней, называется тропическим годом. Длится он примерно 365,24 дня. Именно продолжительность тропического года лежит в основе Григорианского календаря. Он используется сегодня практически везде на Земле.
Солнце — это источник жизни на Земле. Процессы, происходящие в его недрах и на поверхности, оказывает ощутимое влияние на нашу планету. Значение светила было понятно уже в древнем мире. Сегодня мы знаем достаточно много о явлениях, происходящих на Солнце. Природа отдельных процессов благодаря достижениям техники стала понятной.
Солнце — единственная звезда, расположенная достаточно близко для непосредственного изучения. Данные о светиле помогают понять механизмы «работы» других схожих космических объектов. Однако Солнце еще хранит немало тайн. Их только предстоит разведать. Такие явления, как восход Солнца, его перемещение по небу, излучаемое им тепло, когда-то тоже представляли собой загадки. История изучения центрального объекта нашего кусочка Вселенной показывает, что со временем все странности и особенности светила находят свое объяснение.
Источник