Меню

Солнце это физика 8 класс

Использование энергии Солнца на Земле

Источником большей части энергии, которой пользуется человек, является Солнце. За счёт солнечной энергии поддерживается средняя годовая температура на Земле около 15 °С. Поток тепла и света, идущий от Солнца, обусловливает саму возможность жизни на нашей планете. Мощность солнечного излучения, падающего на всю земную поверхность, так велика, что для её замены понадобилось бы около 30 миллионов мощных электростанций.

Стоит только представить себе, что произошло бы на Земле, если бы солнце каждый день не освещало Землю! Мы знаем такие места на Земле, которые слабо нагреваются солнцем. Это Арктика и Антарктика. Там лютый холод, вечный лёд и снег.

Великий непрерывный круговорот воды на Земле совершается за счёт энергии Солнца: вода морей, озёр и рек испаряется, пар, поднявшись вверх, сгущается в облака, переносится ветром в разные места Земли и выпадает в виде осадков. Эти осадки питают реки, которые снова несут свои воды в моря и океаны.

Вследствие неравномерного нагрева поверхности Земли Солнцем возникают ветры. Под действием ветров и приносимой ими влаги постепенно разрушаются огромные горные массивы. Энергия рек используется человеком для получения электроэнергии, передвижения судов, энергия ветра — в ветряных двигателях.

Всё, что происходит на Солнце, самым непосредственным образом сказывается на Земле. Вся жизнь на Земле — жизнь растений и животных — зависит от Солнца. В растениях происходит превращение солнечной энергии в химическую энергию. Чтобы понять это, обратимся к опыту.

Перевёрнутая воронка помещена в стакан с водой. В воронке находится лист растения, окружённый воздухом. Если растение освещать солнцем, то можно обнаружить, что из воронки будет выходить кислород (рис. 17). Как объяснить наблюдаемое явление?

В зелёный лист растения проникают молекулы оксида углерода (IV), которые всегда находятся в воздухе. В результате химической реакции, в которой участвуют оксид углерода (IV) и вода, содержащаяся в листе, образуются молекулы кислорода и органическое вещество. Кислород выделяется в окружающий воздух, а органическое вещество, содержащее углерод, остаётся в листе растения.

Но мы знаем, что для разложения молекулы на атомы нужно затратить энергию (§ 10). Откуда берётся эта энергия? Если описанный выше опыт производить, не освещая лист растения солнцем, то химической реакции не произойдёт. Значит, разложение оксида углерода (IV) в зелёном листе растения происходит благодаря солнечной энергии.

Каменный уголь представляет собой окаменевшие в земле остатки лесов, когда-то буйно росших на больших пространствах Земли. Значит, и в нём запасена энергия Солнца. В болотах из отмирающих растений образуются пласты торфа, используемого как топливо.

Энергия животных, питающихся растениями, и энергия человека — всё это преобразованная солнечная энергия.

Всё шире используется преобразование энергии солнечного излучения в электроэнергию. На поверхности космических кораблей устанавливают солнечные батареи, которые улавливают солнечную энергию и при помощи фотоэлектрических преобразователей превращают её в электроэнергию, которая поступает в единую систему электропитания корабля. Общая полезная площадь солнечной батареи достигает нескольких десятков квадратных метров.

В областях нашей страны, где велико число ясных солнечных дней в году, солнечное излучение используют для нагревания воды, получения водяного пара. Человечество научилось использовать дополнительный источник энергии на Земле — атомную энергию, непосредственно не связанную с Солнцем.

Источник

Доклад Использование энергии солнца на Земле по физике 8 класс сообщение

Солнце — небесное светило, которое освещает Землю и позволяет нам видеть. Ведь свет идет по большей части именно от Солнца, благодаря чему, люди могут наблюдать за пространством своего обитания. С давних времен люди искали возможности использовать не только тепло и свет от этого светила, но и отыскать другие способы преобразования солнечной энергии.

Наиболее распространенным методом является создание солнечных электростанций, которые могут преобразовать получаемый свет и тепло и электричество. Конечно, тут существуют некоторые ограничения, которые обуславливаются переменной облачностью и другими факторами. На данный период существуют возможности запустить такие электростанции в космос, где проблемы облачности не существует, но современные технологии не могут сделать такие космические станции рентабельными.

Поэтому люди по большей части занимаются земными солнечными электростанциями, которые могут быть и промышленными и бытовыми, то есть частными. Для того чтобы обеспечить электроэнергией жилой дом, вполне достаточно установить на крыше солнечные панели в относительно небольшом количестве. Речь может идти не только о частном доме, но и о городском многоквартирном и такая практика существует в Европе, где на крышах городских домов устанавливают солнечные панели, которые обеспечивают какую-то часть энергоснабжения.

Читайте также:  Отрицательные стороны у солнца

На практике использование солнечной энергии сейчас не приносит огромной выгоды, но этот вектор получения энергии является более чем актуальным. Ведь со временем люди начинают потреблять больше энергии. Больше людей пользуется электроприборами, а сами приборы становятся более затратными в смысле использования электричества.

Поэтому, если каждый будет использовать для себя солнечные панели, такой вариант будет выходом из задачи обеспечить каждого человека нужным количеством энергии. Тем не менее, культура такого самообеспечения до сих пор не является развитой. Для этого требуется дополнительное техническое и культурное развитие человечества, которое может наблюдаться в не самой близкой перспективе, хотя и не выглядит чем-то заоблачным.

Сообщение Использование солнечной энергии

Именно солнце определяет существование и развитие всего живого на Земле. Как говорят ученые, возникновение живых организмов обуславливается практически идеальным расположением нашей планеты. Если бы Земля была немного ближе или дальше, то живые организмы тут не могли бы существовать.

Тем не менее, мы, если возможно так сказать, выиграли в космической лотерее и можем существовать на этой планете. Более того, мы можем пользоваться энергией солнца.

Ранее люди использовали солнечное тепло и свет довольно примитивно, в основном для сельского хозяйства или нагревания чего-либо. Сейчас ситуация поменялась и технические достижения позволяют применять более современные методики, в частности механизмы, которые позволяют собирать и преобразовывать солнечную энергию. Помимо этого тенденции к развитию экологических методов получения полезной энергии для человеческих потребностей, делают этот способ довольно популярным.

Во многих прогрессивных странах солнечная энергия постепенно приобретает статус основного источника получения электричества. Используются и бытовые «сборщики» этой энергии – солнечные панели, которые позволяют практически непрерывно получать электричество, и промышленные технологии – целые поля таких панелей крупного размера.

Единственным недостатком такого способа является зависимость от погодных условий. Как нетрудно понять, если погода является облачной, то солнечные установки перестают работать. Тем не менее и этот недостаток нивелируется современными учеными, которые создают специальные аккумуляторы, позволяющие работать более эффективно вне зависимости от погоды.

В завершение следует отметить возможность прямого использования солнечной энергии. К примеру, для нагрева воды. Для этой цели просто используются разнообразные емкости, которые нагреваются на открытом воздухе и могут поставлять воду в систему водоснабжения.

Картинка к сообщению Использование энергии солнца на Земле

Популярные сегодня темы

Одно из самых необычных и интересных млекопитающих нашей планеты. Этот медвежонок, абсолютно не похож на настоящего зверя. Выглядит довольно-таки мило: широкая мордочка

Иудаизм представляет собой одну из древнейших и крупнейших религий мира. Особенностью этой религии является национальная принадлежность.

Птицы, гнездящиеся в наших краях, с приближением зимних холодов улетают в южные страны. Но, несмотря на зимнюю стужу, некоторые пернатые остаются дома, а есть и такие, что прилетают к нам на

Северное или полярное сияние по праву можно считать одним из самых загадочных и уникальных творений природы. Фантасмагорическое зрелище, невероятное буйство красок и вместе с тем завораживающ

Синица – небольшая бойкая птичка, принадлежащая к отряду воробьинообразных. Дружелюбна, доверчива, любит щебетать. Специалисты утверждают, что она способны издавать свыше 40 различных звуковы

Оливер Кромвель (1599-1658 гг.) относится к знаменитым английским политическим деятелям. Кромвель является уроженцем графства Кембриджшира и появляется на свет в семействе мелкого дворянина

Источник

Солнце это физика 8 класс

Основные характеристики Солнца

Солнце — лишь одна из бесчисленного множества звезд, существующих в природе. Благодаря близости Земли к Солнцу мы имеем возможность изучать происходящие на нем процессы и по ним судить об аналогичных процессах в звездах, непосредственно не видимых из-за колоссального их удаления.

Шарообразное Солнце представляется нам светящимся диском. Видимая поверхность Солнца называется фотосферой, ее радиус считается радиусом Солнца. На среднем расстоянии от Солнца до Земли (а0 = 1 а. е.), угол, под которым виден радиус фотосферы θ = 16′, поэтому линейный радиус Солнца R = а0 • sin θ = 1,5 • 10 8 км • 0,00465 = 700 000 км, что в 109 раз превышает радиус Земли.

Читайте также:  Как называется траектория по которой проходит годичный путь солнца

Масса Солнца определяется по движению Земли вокруг Солнца и третьему обобщенному закону Кеплера, согласно которому (если пренебречь массой планеты по сравнению с массой Солнца М)

В этой формуле а = а0, G = 6,67 • 10 -11 м 3 /кг • с 2 — гравитационная постоянная, Т = Т0 = 365,25 сут. — период обращения Земли вокруг Солнца. Так как 1 сут. = 1440 мин = 86 400 с, то Т0 = 365,25 • 86 400 = 3,2 • 10 7 с.

Ускорение свободного падения на поверхности Солнца в 28 раз больше, чем на поверхности Земли, и равно 274 м/с 2 .

На фотографических снимках Солнца часто видны темные пятна, возникающие в его фотосфере. Если в течение нескольких дней следить за пятнами, то можно заметить их перемещение, что указывает на вращение Солнца вокруг оси. Такие наблюдения показали, что Солнце вращается не как твердое тело. Период его обращения вокруг оси вблизи экватора составляет 25 сут., а вблизи полюса — 30 сут. Линейная скорость вращения Солнца на экваторе составляет 2 км/с.

Измерение освещенности, которую создает Солнце на Земле, показало, что на земную поверхность площадью в 1 м 2 , расположенную перпендикулярно к солнечным лучам, ежесекундно поступает от Солнца энергия, равная 1370 Дж. Эта величина получила название солнечной постоянной E = 1,37 кВт/м 2 . По ней нетрудно рассчитать светимость Солнца L, или мощность солнечного излучения — энергию, излучаемую Солнцем за 1 с со всей его поверхности. Для этого достаточно умножить солнечную постоянную на площадь поверхности сферы, в центре которой находится Солнце, радиус которой равен расстоянию от Земли до Солнца а0 = 1,5 • 10 11 м. Так как площадь поверхности сферы радиусом а0 равна S = 4πR 2 , где π = 3,14, то светимость Солнца

L = SE = 4 • 3,14 (1,5 • 10 11 м) 2 • 1,37 • 10 3 Вт/м 2 = 4 • 10 26 Вт.

На долю Земли приходится всего лишь одна двухсотмиллиардная доля энергии, излучаемой Солнцем, но и ее достаточно для расцвета и многообразия жизни на нашей планете.

Судить о температуре Солнца (и звезд) мы можем только по его (их) излучению. Солнце является источником излучения различных длин волн — от длинноволнового радио- до коротковолнового рентгеновского и гамма-излучения. В спектре Солнца в видимом диапазоне длин волн, полученном с помощью спектрографа, видно, что на фоне непрерывного спектра видны линии поглощения различных химических элементов.

По наличию спектральных линий астрономы определяют химический состав Солнца. Оказалось, что Солнце почти на 71% состоит из водорода, 27% составляет гелий, на остальные химические элементы приходится около 2% массы.

Астрономы предполагают, что излучение Солнца близко по своим характеристикам к излучению абсолютно черного тела, законы излучения которого хорошо известны.

Согласно закону Вина длина волны, на которую приходится максимум излучения нагретого тела λmах, связана с температурой Т формулой

Максимум излучения Солнца приходится на длину волны λmах = 4,8 • 10 -7 м, следовательно, температура Солнца должна быть

Другой метод оценки температуры основан на законе Стефана — Больцмана.

Закон Стефана — Больцмана:

Мощность излучения i с квадратного метра поверхности абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры Т.

i = σТ 4

где σ = 5,67 • 10 -8 Вт/(м 2 • К) — постоянная величина.

Единица измерения мощности излучения — Вт/м 2 .

Так как площадь солнечной поверхности S = 4πR 2 , то светимость Солнца

L = iS = σТ 4 πR 2 = 4 • 10 26 Вт.

Отсюда следует, что температура солнечной фотосферы Подставляя в эту формулу указанные выше значения, получим, что T = 5800 К, что мало отличается от результата, полученного по закону Вина. Обычно среднюю температуру солнечной фотосферы считают близкой к 6000 К.

Строение солнечной атмосферы

Все виды излучений, которые мы воспринимаем от Солнца, образуются в его самых верхних слоях, в атмосфере. Самый глубокий и плотный слой атмосферы — фотосфера — имеет толщину около 200 км, плотность вещества в ней составляет 10 -5 кг/м 3 , что значительно меньше плотности земной атмосферы. Несмотря на малое значение толщины и плотности, фотосфера непрозрачна для всех видов излучений, образующихся в более глубоких слоях Солнца, поэтому мы не можем заглянуть в его подфотосферные слои.

В фотосфере видна зернистая структура, получившая название грануляции. Характерные угловые размеры гранул, напоминающих по виду рисовые зерна, составляют 1—2′, но линейные их размеры достигают тысяч и более километров. Наблюдения показывают, что грануляция находится в непрерывном движении и изменении. Гранулы живут от 5 до 10 мин, а потом на их месте появляются новые. В центре более яркой и горячей части гранулы происходит подъем из-под фотосферы более горячего вещества и опускание под фотосферу более темного и холодного вещества, окаймляющего гранулу. Скорость подъема и опускания газа составляет около 1 км/с, а разница между температурой горячего и холодного вещества близка к 300 К. Таким образом, грануляция на Солнце указывает на то, что энергия в фотосферу поступает из более глубоких и горячих слоев Солнца путем конвекции.

Читайте также:  Как пройти уровень открывая солнце

На ярком фоне фотосферы наблюдаются темные пятна. Размеры солнечных пятен могут превышать 10 000 км! Такие крупные пятна хорошо видны даже невооруженным глазом (конечно, только сквозь темный светофильтр).

На фоне ослепительно яркой фотосферы пятно кажется нам черным. Однако измерения показали, что яркость пятен в 5—10 раз меньше яркости окружающей фотосферы, а их реальный цвет — красноватый. По этим измерениям оказалось, что температура пятен около 4000 К.

Наблюдения показали наличие сильного магнитного поля в пятнах. В некоторых пятнах магнитная индукция достигает 0,5 Тл, в то время как в среднем в фотосфере она составляет 10 -4 —10 -5 Тл.

Внешняя часть солнечной атмосферы — корона имеет вид лучистого жемчужного сияния, яркость которого в миллион раз меньше яркости фотосферы. Солнечная корона прослеживается до расстояний в десять и более радиусов Солнца.

Солнечная корона нагрета до температуры около 2 • 10 6 К. При такой температуре вещество короны представляет собой полностью ионизованную плазму, излучающую в рентгеновском диапазоне. И действительно, при наблюдениях в рентгеновские телескопы, которые установлены на космических астрономических обсерваториях за пределами земной атмосферы, солнечная корона представляется в полной красе, в то время как поверхность Солнца (фотосфера) практически не видна.

Во время полных солнечных затмений на краю Солнца, во внутренних слоях солнечной короны, наблюдаются протуберанцы — струи горячего вещества, имеющие вид выступов и фонтанов. Некоторые из них — спокойные протуберанцы — в течение многих часов висят над солнечной поверхностью, другие — эруптивные (взрывные) — внезапно с огромной скоростью взлетают над поверхностью, быстро поднимаются до высоты в десятки и даже сотни тысяч километров и так же быстро падают вниз.

Из короны в межпланетное пространство истекает непрерывный поток частиц (протонов, ядер гелия, ионов, электронов), называемый солнечным ветром. Частицы солнечного ветра покидают солнечную корону со скоростью около 800 км/с, поэтому солнечное притяжение не может их удержать. Вблизи Земли скорость солнечного ветра достигает 500 км/с.

Солнечная активность

Количество солнечных пятен меняется с периодом около 11 лет. На рисунке показано наблюдаемое изменение числа пятен на Солнце с начала XVII в. Когда наблюдается максимальное число пятен, то говорят о максимуме солнечной активности. В годы максимума солнечной активности значительно возрастает число мощных протуберанцев, в такт с солнечной активностью меняется и форма солнечной короны. Одним из самых значительных проявлений солнечной активности являются солнечные вспышки, во время которых выделяется колоссальная энергия — в течение десятка минут выделяется энергия до 10 25 Дж. Наблюдения со спутников установили, что во время солнечных вспышек происходит резкое увеличение ультрафиолетового излучения, появляется мощное рентгеновское и гамма-излучение. Датчики быстрых заряженных частиц, установленные на искусственных спутниках, показали, что при мощных солнечных вспышках в межпланетное пространство выбрасываются с огромными скоростями, иногда доходящими до 100 000 км/с, мириады частиц, обладающих большой кинетической энергией и получивших название солнечных космических лучей. Их основной состав — ядра атомов водорода, гелия, а также электроны.

Вспышки и другие проявления солнечной активности оказывают значительное влияние на физические условия в земной атмосфере и околоземном космическом пространстве и, как следствие, на биологические явления.

Астрономы не только взвесили Солнце, но и измерили температуру его поверхности и светимость. Наземные и космические исследования позволили изучить солнечную атмосферу и обнаружить проявления солнечной активности.

Астрономия. 11 класс — Конспекты по учебнику «Физика-11» (Мякишев, Буховцев, Чаругин) — Класс!ная физика

Источник

Adblock
detector