Меню

Солнце это самая горячая звезда или нет

Солнце

Солнце — это звезда и центр (нашей) Солнечной системы. Солнце является источником всей жизни и энергии на нашей планете благодаря фотосинтезу, а также определяет климат и погоду (Земли).

Кажется, что его цвет жёлтый, но на самом деле Солнце белое. Такой обман зрения происходит из-за влияния атмосферы.

Наше Солнце ярче, чем большинство других звёзд в галактике, и только около 5% звёзд в Млечном Пути крупнее Солнца.

Планеты Солнечной системы по порядку от Солнца:

Происхождение его названия узнать очень сложно, поскольку оно широко используется на многих языках. Сам корень слова «солнце» мог иметь начало в латыни «sol» (что значит то же самое — «солнце»). В древнерусском (с XI века) и старославянском это слово звучало как «слъньце».

Краткая характеристика

Что? Сколько?
Расстояние от Земли до Солнца Среднее — около 149,6 млн км (макс. — 152 млн км, мин. — 147 млн км)
Температура поверхности Солнца Около 5500°С–6000°С
Диаметр Солнца Около 1,392 млн км
Масса Солнца 1,988 × 10³ºкг
Радиус Солнца 696 тыс. км
Плотность Солнца В среднем плотность равна около 1,408 г/см³
Возраст Солнца Около 5 млрд лет

Спутники Солнца

На данный момент подсчитать все спутники считается невозможно. У Солнца и других звёзд нет спутников как таковых — у них есть планеты и карликовые планеты, их спутники (т.е. луны), а ещё астероиды, метеориты, кометы и многие другие объекты.

Атмосфера и строение

Атмосфера

Атмосферу Солнца обычно делят на:

  • фотосферу (видимая светящаяся поверхность и плотный слой атмосферы)
  • хромосферу (часть атмосферы, что находится сразу над слоями фотосферы)
  • корону (самая внешняя, горячая атмосфера, которая переходит в солнечный ветер, её видно во время затмений)

Три слоя атмосферы Солнца состоят в основном из:

Существуют также корональные дыры — это область внешней атмосферы Солнца, которая кажется темнее, потому что там меньше горячего газа.

Солнечный ветер — это поток горячих заряженных частиц (в основном протоны и электроны), которые покидают Солнце со скоростью около 400 км/с. Он существует потому, что газы в короне очень горячие и движутся очень быстро, так, что их не может удержать даже сильнейшая солнечная гравитация.

Строение

Под видимой поверхностью Солнце имеет несколько слоёв:

  1. Ядро: это центр с температурой выше 14 000 000°С, там происходят реакции как в термоядерном реакторе, его плотность больше плотности воды в 150 раз; его радиус равен 150–175 тыс. км, т.е. 20–25% от радиуса Солнца.
  2. Радиационная зона: окружает ядро; это плотное и горячее вещество передаёт тепловое излучение ядра аж за пределы Солнца.
  3. Конвективная зона: покрывает радиационную зону и доходит до фотосферы (внешней поверхности); это место, где «переносится тепло изнутри Солнца»: внутри звезды образуется тепло и переносится наверх в столбах горячего газа. Наверху газ теряет тепло (охлаждается), и опускается вниз, чтобы опять нагреться.

Источник

5 самых горячих мест во Вселенной

1. Большой взрыв

Побить это рекорд вряд ли удастся; в момент рождения наша Вселенная имела температуру около 10 32 К, и под словом «момент» мы здесь подразумеваем не секунду, а планковскую единицу времени, равную 5 10 -44 секунды. В это буквально неизмеримо короткое время Вселенная была так горяча, что мы понятия не имеем, по каким законам она существовала; на таких энергиях не существуют даже фундаментальные частицы.

2. БАК

Второе место в списке самых горячих мест (или моментов времени, в данном случае разницы нет) после Большого Взрыва занимает наша голубая планета. В 2012 году на Большом Адронном коллайдере физики столкнули разогнанные до 99% скорости света тяжелые ионы и на краткое мгновение получили температуру в 5,5 триллионов Кельвин (5*10 12 ) (или градусов Цельсия — на таких масштабах это одно и то же).

3. Нейтронные звезды

10 11 К — такова температура внутри новорожденой нейтронной звезды. Вещество при такой температуре совсем не похоже на привычные нам формы. Недра нейтронных звезд состоят из бурлящего «супа» электронов, нейтронов и других элементов. Всего за несколько минут звезда остывает до 10 9 К, а за первые сто лет существования — еще на порядок.

4. Ядерный взрыв

Температура внутри огненного шара ядерного взрыва составляет около 20 000 К. Это больше, чем температура на поверхности большинства звезд главной последовательности.

5. Самые горячие звезды (кроме нейтронных)

Температура поверхности Солнца — около шести тысяч градусов, но это не предел для звезд; самая горячая из известных на сегодняшний день звезд, WR 102 в созвездии Стрельца, раскалена до 210 000 К — это в десять раз горячее атомного взрыва. Таких горячих звезд сравнительно немного (в Млечном Пути их нашли около сотни, еще столько же в других галактиках), они в 10-15 раз массивнее Солнца и намного ярче него.

Источник

Почему солнце горячее?

Солнце горячее, потому что это звезда. А внутри любой звезды идут особые очень горячие процессы. Эти процессы называются термоядерный синтез.

  • Термо- — означает «жар» в переводе с греческого.
  • Ядерный — значит, что сталкиваются ядра атомов. Атомы — это такие крошечные «кирпичики» из которых состоит всё вокруг. Это, кстати, тоже греческое слово, которое означает «неделимый».
  • Синтез — по-гречески значит «соединение».

То есть, когда два ядра атома сталкиваются, они соединяются вместе, образуя другое ядро. От удара появляется энергия — тот самый жар. Примерно как, если сильно-сильно хлопнуть в ладоши, то рукам станет тепло. А ядра сталкиваются намного сильнее. Из-за этого Солнце очень горячее.

В центре Солнца температура может достигать десятков миллионов градусов. На поверхности Солнца температура намного ниже — несколько тысяч градусов, но даже это очень горячо.

Именно в ходе термоядерного синтеза появились все вещества, которые мы сегодня знаем:

  • кислород, которым мы дышим
  • углерод, из которого созданы наши тела и вообще все живое на Земле
  • азот, который нужен растениям для роста
  • различные минералы (кремний, железо, кальций и т.д.)

Вот только появились они не в Солнце, а в другой звезде, гораздо более древней, светившей миллиарды лет назад. Вот в ней все эти и многие другие вещества и возникли. Потом та звезда закончила свою жизнь и взорвалась, раскидав все свои атомы по галактике. Многие из них оказались там, где позднее появилось наше Солнце и сформировалась планета Земля. Поэтому на Земле все нужные для жизни атомы уже были.

А интересно это вот почему: получается, что все мы сделаны из звёзд. Без звёзд жизни на Земле не было бы, потому что не было бы химических веществ, которые для неё нужны.

Источник

Самые горячие звезды

С Земли каждая звездочка на ночном небе кажется голубоватой, но на самом деле мы можем наблюдать и оранжевого карлика, и красного сверхгиганта. Все дело в видимом спектре, который воспринимает человеческий глаз. А почему звезды имеют разные цвета и на что это влияет? Давайте разбираться.

Оранжевые звезды
Такой тип относится к звездам, которые находятся на стадии основной последовательности, это одни из самых стабильных и долгоживущих звезд. Однако их масса не особо велика, а в основном эти звезды являются карликами. Например наше Солнце относят к желтовато-оранжевым карликам. Звезде уже 4,5 миллиарда лет, и ученые дают ей минимум еще столько же. Однако потом она начнет менять свой цвет.

Красные звезды
В основном это гиганты и сверхгиганты. Встречаются и карлики, но практически всегда они являются компаньонами более массивных и горячих звезд. Красные гиганты и сверхгиганты намного больше и жарче оранжевых звезд. Через 4,5 миллиарда лет наше Солнце тоже встанет на путь красной звезды. Наше светило начнет увеличиваться и разогреваться, сменит окрас на красный, и наконец сбросит мантию. К тому моменту Солнце испепелит большинство планет, в том числе и Землю. Но есть звезды еще горячее.

Голубые звезды
Это самый интересный и очень распространенный тип. В основном голубые звезды — это сверхгиганты, но при этом обладающие массой всего нескольких Солнц. Связанны их цвет и масса с очень малой металличностью в составе, что позволяет сжигать очень много водорода и быть самыми горячими звездами. Когда водород заканчивается они за какие-то несколько миллинов лет сжигают весь гелий, меняют окрас на красный и взрываются как сверхновые. Например знаменитая Бетельгейзе ранее была голубым сверхгигантом, но сейчас это красный сверхгигант, готовый взорваться в любой момент. Она озарит наше ночное небо примерно на год после своей смерти, возможно даже будет ярче полной луны.

К голубым сверхгигантом относятся многие знаменитые звезды — Ригель, Денеб и многие другие. По жару они превосходят все звезды, которые находятся на основной последовательности.

Источник

Температура звезд. Самые горячие и самые холодные звезды

Как известно, температура внутри звезд очень высокая. Ведь благодаря ей и запускаются термоядерные реакции. При сжатии молекулярного облака гравитационными силами происходит нагрев, который при достаточной массе молекул всё увеличивается и увеличивается. Так, начинается синтез гелия из водорода или, проще говоря, рождается звезда.

Несмотря на то, что все облака состоят из молекул водорода, они отличаются друг от друга количеством его частиц. В итоге получается разная масса протозвезд. Хотя процесс формирования светил примерно одинаковый.

Главным образом, температура звезд повышается при их начальном образовании, а затем при реакциях, происходящих в их ядре. В свою очередь, тепло, производимое в центральной части светила, поднимается и в его верхние слои (то есть на поверхность). А так как у разных тел она разная в недрах, соответственно, она отличается и на поверхности.

Стоит отметить, что внутри и снаружи нагрев светила не может быть одинаковым. Что интересно, звёздная корона (внешняя часть атмосферы) во много раз горячее нижних атмосферных слоёв, но, разумеется, ядерный жар самый высокий.

От чего зависит температура звезды

В действительности, она обуславливается двумя основными факторами.
Во-первых, уровнем производимой ядром энергии. По данным учёных, ядро разогревается до 15 млн градусов. Однако излучается только тепло, полученное в результате термоядерных реакций. А вот энергия от гравитационного сжатия остаётся в самом центре. Таким образом, температура поверхности звезд напрямую зависит от силы внутренних процессов, а также какие элементы в них задействованы. Например, если происходит синтез не только гелия из водорода, но и синтез с участием тяжёлых элементов, то и излучающая энергия будет в разы больше. Как следствие, поверхностный нагрев увеличится.

А во-вторых, важное значение имеет площадь поверхности, которая излучает внутреннюю энергию. Дело в том, что звёздные объекты производят и в то же время отдают энергию в космическое пространство. И сколько они её отдадут, зависит от внешней оболочки, то есть от излучаемой поверхности.

Когда у звёзд расширяются внешние границы, увеличивается и ядро. А чем оно плотнее, тем горячее. Но так лишь внутри, а снаружи (в фотосфере) такие звезды имеют низкую температуру. Проще говоря, чем больше площадь, тем больше энергетический расход.

Помимо этого, прослеживается связь размеров , масс, светимостей и температур звёздных объектов. К примеру, чем массивнее звёздное тело, тем выше его светимость, а значит и нагрев. Стоит отметить, что температура звезды определяет её цвет. Взаимосвязь характеристик светил отображена на диаграмме Герцшпрунга-Расела .

Как видно, спектральные классы отличаются между собой набором характеристик.

Как определить и в чем измеряется температура звезд

Стоит отметить, что для данной характеристики используют эффективную величину нагретости тела. Другими словами, насколько горячий объект, настолько он излучает энергию. В случае со звёздными телами, их накал даёт характеристику светимости.

А вот для определения эффективной температуры звезд применяют закон Стефана-Больцмана. Он гласит, что мощность излучения нагретого тела прямо пропорциональна площади поверхности и температуры четвёртой степени.

где σ — это постоянный коэффициент 5,7*10-8,
S — площадь, а P — излучаемая мощность.

На самом деле, определяется температура звезд в Кельвинах (К). Правда, можно перевести в градусы Цельсия (С).

Какие температуры поверхности могут иметь звезды

По оценке учёных, показатели отдельных светил разные. Более холодные обладают теплом 2000-5000 К , средняя температура (у жёлтых и оранжевых) тел составляет 5000-7500 К , а горячие представители достигают значений 7500-80000 К .

Источник

Читайте также:  Определите жанр произведения кладовая солнца
Adblock
detector