Меню

Солнце это желтый карлик спектрального класса

Какой звездой является Солнце? К какому типу звезд относится наше светило?

Существует множество типов звезд: красные гиганты, белые карлики и т.п. А к какому классу относится наше Солнце?

Чаще всего звезды классифицируют по их положению на так называемой главной последовательности, или диаграмме Герцшпрунга–Рассела. По спектральной классификации Солнце принадлежит к классу G2V (желтый карлик). Признаками, по которым звезду относят к тому или иному классу, являются ее масса и температура поверхности. Если звезда имеет температуру 5000-6000 К (у Солнца она равна 5778 К) и массу в диапазоне 0,8-1,2 масса Солнца, то ее относят к желтым карликам. Другими известными представителями этого класса являются Альфа Центавра А и Тау Кита. Средняя продолжительность жизни желтых карликов составляет 10 млрд лет.

Хотя астрономы и называют Солнце карликом, на самом деле оно превосходит по яркости большую часть звезд в Млечном Пути. Дело в том, что 70-90% звезд в нашей галактике относятся к красным карликам, которые меньше и тусклее Солнца.

Не следует думать, что желтые карлики светят желтым светом. На самом деле и Солнце, и почти все остальные звезды светят белым цветом.

Стоит отметить, что положение звезд на диаграмме Герцшпрунга–Рассела меняется со временем. Примерно через 5 млрд лет Солнце резко вырастет в размерах (но не по массе) и станет красным гигантом. Далее наша звезда потеряет большую часть своей материи и превратится в белого карлика. Можно считать, что на этом эволюция Солнца прекратится, и оно будет медленно остывать.

Также существует классификация звезд по их химическому составу. Солнце считается звездой, относящейся к типу «население I». Это значит, что в его составе очень много тяжелых элементов (металлов). Существуют еще звезды «населения II», металличность которых на порядки ниже. Теоретически могут существовать и звезды «населения III», в которых тяжелых элементов почти нет, однако пока что астрономам не удалось их обнаружить.

Население звезды указывает на время её рождения. Звезды «населения III» возникли самыми первыми, но, вероятно, не дожили до наших дней. Из их материи сформировалось население II, а население I – это уже третье поколение звезд.

Список использованных источников

Источник

Мой маленький желтый карлик: как устроена единственная звезда в нашей системе

Солнце — одна из 400 млрд звезд в галактике Млечный путь, и самая близкая к нашей планете. Благодаря Солнцу сформировалась Земля, именно из-за солнечной активности на нашей планете происходят многие естественные процессы, без которых не было бы жизни. «Хайтек» разобрался, как формировалась самая важная для землян звезда, что с ней происходит сейчас и какое будущее ждет человечество.

Глава 1. Формирование

Считается, что Солнце сформировалось около 4,5 млрд лет назад благодаря относительно быстрому сжатию под силами гравитации облака молекулярного водорода. Существует несколько теорий возникновения Солнечной системы, приверженцы самой распространенной гипотезы считают, что эта область Млечного пути начала формироваться после взрыва одной или нескольких сверхновых.

Эта теория основана на том, что в первичном веществе Солнечной системы содержится аномальное количество золота и урана. Согласно многим математическим моделям, их должно быть на порядок меньше, поэтому ученые развивают теорию эндотермических реакций из-за взрыва сверхновой.

В последние миллиарды лет Солнце находится во внутреннем крае рукава Ориона Млечного пути — между рукавом Персея и рукавом Стрельца, в так называемом Местном межзвездном облаке — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность Местном пузыре — зоне рассеянного высокотемпературного межзвездного газа.

После постепенного формирования Солнца из оставшегося облака молекулярного газа под воздействием гравитации начали появляться и другие объекты Солнечной системы — каменные карлики недалеко от звезды и газовые гиганты на окраине образования. На Солнце приходится 99,8% всей массы Солнечной системы, при этом оно больше и ярче, чем 85% звезд во Вселенной. Оставшиеся 0,2% массы Солнечной системы делят все остальные планеты, спутники, астероиды и космическая пыль, хотя большая часть из этой массы досталась Юпитеру.

Звезды такого типа, как Солнце, в среднем существуют около 10 млрд лет — то есть сейчас оно находится на середине своего жизненного пути.

Солнце в настоящий момент состоит на 70% из водорода, на 28% из гелия, оставшиеся 2% приходятся на различные металлы. Этот показатель будет постоянно меняться со временем, поскольку звезда получает энергию благодаря термоядерным реакциям, превращая водород в гелий в его ядре. Каждую секунду в ядре Солнца около 4 млн т вещества превращается в лучистую энергию, в результате чего генерируются солнечное излучение и поток солнечных нейтрино.

По спектральной классификации Солнце относится к типу G2V (желтый карлик). Средняя плотность Солнца составляет 1,4 г/см³ — в 1,4 раза больше, чем у воды. Температура — очень разная, зависит от слоя звезды — газовая поверхность нагревается не более чем до 5 тыс. градусов Цельсия, тогда как внешняя поверхность звезды — солнечная корона — может нагреться до 2 млн градусов Цельсия. Пока это одна из главных загадок в структуре Солнца, «Хайтек» подробно рассказывал об этом здесь.

Читайте также:  Черная дыра три солнца

Такое строение Солнца также сказывается и на разной скорости вращения его слоев. Поскольку Солнце не такое твердое тело, как Земля, его части вращаются с разной скоростью — на экваторе поверхность вращается один раз в 25,4 дней, а в районе полюсов — раз в 36 дней.

Расстояние от Земли до Солнца составляет в среднем 149,6 млн км — одна астрономическая единица. При этом солнце находится на расстоянии в 26 тыс. световых лет от центра Млечного пути. Один оборот вокруг центра галактики Солнечная система делает раз в 250 млн лет. В среднем орбитальная скорость Солнца составляет 217 км/час — это значит, что один световой год она проходит за 1,4 тыс. земных, а одну астрономическую единицу — за восемь земных суток.

Глава 2. Воздействие Солнца на Землю

Жизнь на Земле появилась под огромным влиянием Солнца. Излучение ближайшей к нам звезды — основной источник энергии для огромного количества процессов, происходящих на нашей планете. Свет необходим для начальных стадий фотосинтеза, в результате чего выделяется кислород для появления дальнейшей жизни, солнечное тепло определяет климат и температуру на Земле, именно солнечная энергия способствовала появлению нефти и других видов полезных ископаемых.

Земная поверхность и вся тропосфера — нижняя часть атмосферы, где образуются облака — получает энергию непосредственно от Солнца. До поверхности Земли доходят только 40% солнечного излучения, остальные 60% остаются в атмосфере или отражаются обратно в космос. При этом в последние десятилетия земная атмосфера начинает поглощать больше солнечного излучения из-за парникового эффекта.

Благодаря солнечному свету на Земле также происходят дожди, туманы, снегопады, ураганы, даже меняются течения, в том числе океанические, формируются Эль-Ниньо. Кроме того, под действием солнечного света образуются облака, из которых идут дожди, а также на море появляются волны, приводящие к эрозии пород.

Существует наука гелиобиология, изучающая воздействие активности Солнца на человека. Чаще всего ученые анализируют воздействие солнечного ветра на магнитосферу Земли — именно ее реакция сказывается сильнее всего на самочувствии человека, на работе многих электрических приборов.

Другой объект изучения гелиобиологов — солнечные вспышки, когда звезда выбрасывает потоки высокоэнергетических заряженных частиц, долетающие до Земли за несколько часов. Несмотря на то, что Земля в основном защищена от них магнитосферой, вспышки сильно влияют на орбитальные спутники.

Кроме того, солнечное излучение радиоактивно, оно негативно влияет на развитие будущих космических миссий человечества. Люди давно изучают возможности создания колоний на близлежащих планетах, однако Солнце, несмотря на его доминирующее положение в развитии человечества, одновременно и тормозит выход людей в космос. «Хайтек» подробно рассказывал, как люди занимаются изучением Солнца и отправляют к нему спутники.

Глава 3. Будущее

К большому сожалению, будущее Земли пока является не самым светлым. Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 млрд лет. При этом уже сейчас Солнце просуществовало 4,5 млрд лет — около половины от своей возможной жизни.

По мере того, как Солнце постепенно расходует запасы водорода, оно становится все горячее, а его светимость медленно возрастает. Через 1,1 млрд лет — в возрасте 5,5 млрд лет — яркость Солнца увеличится на 11%. Тогда звезда начнет длительный переход в другой класс — красного гиганта, а жизнь на Земле полностью закончится из-за кардинального повышения температуры и парникового эффекта, связанного с увеличением солнечной активности. При этом в таком возрасте Солнце достигнет своей максимальной температуры и в будущем станет только остывать.

Недавно китайские ученые предложили несколько вариантов развития Земли и возможностей изменения орбиты, чтобы нашу планету не постигла судьба сухой и горячей Венеры.

К возрасту примерно в 8 млрд лет — через 3,5 млрд лет от настоящего времени — яркость Солнца увеличится на 40%. При этом по мере того, как водородное топливо в ядре Солнца будет сокращаться и выгорать, его внешняя оболочка начнет расширяться, а ядро, наоборот, сжиматься и нагреваться. К этому времени радиус Солнца увеличится настолько, что поверхность звезды будет находиться примерно в районе нынешней Венеры.

Постепенно Солнце начнет медленнее крутиться, и даже если жителям Земли к тому моменту удастся избежать вымирания, планета постепенно начнет сходить с орбиты и приближаться к звезде. Кроме того, мощнейший солнечный ветер, связанный со снижением производства энергии из водорода и уплотнения гелия, должен уничтожить всю атмосферу Земли.

Читайте также:  Укрывной материал от солнца зеленый

В возрасте 10,9 млрд лет водород в ядре закончится, а температура увеличится настолько, что запустится процесс горения водорода в окружающей его оболочке. Это приведет к тому, что Солнце перейдет в другую классификацию и станет красным гигантом. В этой фазе радиус солнца увеличится уже в 256 раз по сравнению с современным, а внешние слои достигнут орбиты нынешней Земли.

Красный гигант — самая короткая фаза жизни Солнца. Спустя 10 млн лет в ядре температура достигнет 100 млн градусов Цельсия, произойдет гелиевая вспышка, благодаря которой начнется термоядерная реакция синтеза углерода и кислорода из гелия. В результате появления нового источника энергии размер Солнца резко уменьшится — на период в 100 млн лет, пока звезда не уничтожит весь гелий. После этого она снова станет красным гигантом, а яркость увеличится уже в 5,2 тыс. раз. В таком состоянии Солнце просуществует не более 20 млн лет, после чего внешняя оболочка звезды оторвется от ядра, и от нее останется только белый карлик, сравнимый по размеру с Землей. Ученые считают, что у звезды не хватит энергии, чтобы закончить свое существование взрывом сверхновой или трансформацией в черную дыру.

Появившийся в результате смерти Солнца белый карлик будет постепенно угасать в течение миллиардов лет. Такой жизненный цикл считается типичным для звезд комплекции и состава Солнца, поэтому крайне маловероятно, что солнечное развитие пойдет по другому пути. Человечество, если, конечно, нам не удастся основать внеземные колонии или сбежать в соседние галактики, вряд ли застанет столь бесславный конец нашей главной звезды — звезды по имени Солнце.

Источник

Спектральная классификация звезд

Спектры звезд – это их паспорта с описанием всех звездных особенностей. Звезды состоят из тех же химических элементов, которые известны на Земле, но в процентном отношении в них преобладают легкие элементы: водород и гелий.

Спектры звезд – это их паспорта с описанием всех звездных особенностей.

По спектру звезды можно узнать ее светимость, расстояние до звезды, температуру, размер, химический состав ее атмосферы, скорость вращения вокруг оси, особенности движения вокруг общего центра тяжести.

Спектральный аппарат, устанавливаемый на телескопе, раскладывает свет звезды по длинам волн в полоску спектра. По спектру можно узнать, какая энергия приходит от звезды на различных длинах волн и оценить очень точно ее температуру. Цвет и спектр звезд связан с их температурой. В холодных звездах с температурой фотосферы 3000 К преобладает излучение в красной области спектра. В спектрах таких звездах много линий металлов и молекул. В горячих голубых звездах с температурой свыше 10000–15000 К большая часть атомов ионизована. Полностью ионизованные атомы не дают спектральных линий, поэтому в спектрах таких звездах линий мало.

На основе многочисленных снимков спектров звезд, полученных в США на Гарвардской обсерватории, в начале XX в. была разработана детальная классификация звездных спектров, которая легла в основу современной спектральной классификации.

В Гарвардской классификации спектральные типы (классы) обозначены буквами латинского алфавита: О, В, A, F, G, К и М. Поскольку в эпоху разработки этой классификации связь между видом спектра и температурой не была еще известна, то после установления соответствующей зависимости пришлось изменить порядок спектральных классов, который первоначально совпадал с алфавитным расположением букв.

Основная (гарвардская) спектральная классификация звёзд

Внутри класса звёзды делятся на подклассы от 0 (самые горячие) до 9 (самые холодные). В классе О подклассы начинаются с О5. Последовательность спектральных классов отражает непрерывное падение температуры звезд по мере перехода к все более поздним спектральным классам.

Подавляющее большинство звезд относится к последовательности от О до М. Эта последовательность непрерывна: характеристики звезд плавно изменяются при переходе от одного класса к другому.

Спектр. класс Цвет Темпер., K Особенности спектра Типичные звезды
О Голубой 40000 Интенсивные линии ионизированного гелия, линий металлов нет Минтака
В Голубовато-белый 20000 Линии нейтрального гелия. Слабые линии Н и К ионизованного кальция Спика
А Белый 10000 Линии водорода достигают наибольшей интенсивности. Видны линии Н и К ионизованного кальция, слабые линии металлов Сириус, Вега
F Желтоватый 7000 Ионизированные металлы. Линии водорода ослабевают Процион, Канопус
G Желтый 6000 Нейтральные металлы, интенсивные линии ионизованного кальция Н и К Солнце, Капелла
К Оранжевый 4500 Линий водорода почти нет. Присутствуют слабые полосы окиси титана. Многочисленные линии металлов Арктур, Альдебаран
М Красный 3000 Сильные полосы окиси титана и других молекулярных соединений Антарес, Бетельгейзе
Читайте также:  Григ заход солнца романс

Характерной особенностью звездных спектров также является наличие у них огромного количества линий поглощения, принадлежащих различным элементам. Тонкий анализ этих линий позволил получить особенно ценную информацию о природе наружных слоев звезд. Химический состав наружных слоев звезд, откуда к нам непосредственно приходит их излучение, характеризуется полным преобладанием водорода. На втором месте находится гелий, а количество остальных элементов достаточно невелико. Приблизительно на каждые десять тысяч атомов водорода приходится тысяча атомов гелия, около 10 атомов кислорода, немного меньше углерода и азота и всего лишь один атом железа. Примеси остальных элементов совершенно ничтожны. Без преувеличения можно сказать, что звезды состоят из водорода и гелия с небольшой примесью более тяжелых элементов.

Хорошим индикатором температуры наружных слоев звезды является ее цвет. Горячие звезды спектральных классов О и В имеют голубой цвет; звезды, сходные с нашим Солнцем (спектральный класс которого G2), представляются желтыми, звезды же спектральных классов К и М – красные. В астрофизике имеется тщательно разработанная и вполне объективная система цветов. Она основана на сравнении наблюдаемых звездных величин, полученных через различные строго эталонированные светофильтры. Количественно цвет звезд характеризуется разностью двух величин, полученных через два фильтра, один из которых пропускает преимущественно синие лучи («В»), а другой имеет кривую спектральной чувствительности, сходную с человеческим глазом («V»). Техника измерений цвета звезд настолько высока, что по измеренному значению B-V можно определить спектральный класс звезды с точностью до подкласса. Для слабых звезд анализ цветов – единственная возможность их спектральной классификации.

Гарвардская спектральная классификация основана на наличии или отсутствии, а также относительной интенсивности определенных спектральных линий. Кроме перечисленных в таблице основных спектральных классов, для относительно холодных звезд имеются еще классы N и R (полосы поглощения молекул углерода C2, циана CN и окиси углерода CO), класс S (полосы окисей титана TiO и циркония ZrO), а также для самых холодных звезд – класс L (полоса гидрида хрома CrH, линии рубидия, цезия, калия и натрия). Для объектов субзвездного типа – «коричневых карликов», промежуточных по массе между звездами и планетами, недавно введен специальный спектральный класс T (полосы поглощения воды, метана и молекулярного водорода).

Спектральные классы О, В, А часто называют горячими или ранними, классы F и G – солнечными, а классы К и М – холодными или поздними спектральными классами.

Так как одному гарвардскому спектральному классу могут соответствовать звёзды с одинаковой температурой фотосферы, но различных классов светимости (то есть отличающимися на порядки светимостями), то с учётом светимости была разработана йеркская спектральная классификация (называемая ещё МКК – по инициалам её авторов У. Моргана, Ф. Кинана и Э. Келмана).

В соответствии с этой классификацией звезде приписывают гарвардский спектральный класс и класс светимости.

Различают следующие классы светимости

Класс Название Абс. звёздные
величины MV
0 Гипергиганты
Ia+ Ярчайшие сверхгиганты −10
Ia Яркие сверхгиганты −7,5
Ib Нормальные сверхгиганты −4,7
II Яркие гиганты −2,2
III Нормальные гиганты +1,2
IV Субгиганты +2,7
V Карлики главной последовательности +4
VI Субкарлики +5-6
VII Белые карлики +13-15

Таким образом, если гарвардская классификация определяет абсциссу диаграммы Герцшпрунга – Рассела, то йеркская – положение звезды на этой диаграмме. Дополнительным преимуществом йеркской классификации является возможность по виду спектра звезды оценить её светимость и, соответственно, по видимой величине – расстояние (метод спектрального параллакса).

Солнце, будучи жёлтым карликом, имеет йеркский спектральный класс G2V.

Звёзды одинаковых (или близких) классов светимости образуют на диаграмме Герцшпрунга – Рассела последовательности (ветви), например, ветвь красных гигантов или белых карликов.

Диаграмма Герцшпрунга-Рассела
(в разных представлениях)

Диаграмма была предложена астрономами Эйнаром Герцшпрунгом и Генри Расселом независимо друг от друга примерно в 1910 году.

Используя диаграмму, астрономы способны проследить жизненный цикл звезд, от молодых горячих протозвезд, через основные фазы развития, вплоть до фазы умирающего красного гиганта. Диаграмма также показывает зависимость температуры и цвета звезд от различных этапов их жизненного цикла.

На диаграмме Герцшпрунга-Рассела можно увидеть диагональную линию, ведущую с левого верхнего угла вправо вниз. Она известна как Главная Последовательность и большинство звезд проходят именно эти этапы в своем развитии. В целом, когда температура звезды уменьшается, падает и светимость звезды. На диаграмме также можно увидеть ответвление, которое находится выше 100 ед. светимости. Это красные гиганты, которые находятся в конце своего жизненного цикла. Они могут быть одновременно яркими и относительно холодными, поскольку они очень большие. Обычно эта стадия длится несколько миллионов лет.

Наклонные пунктирные линии на нижней диаграмме определяют размеры звезд в радиусах Солнца.

Источник

Adblock
detector