Меню

Солнце излучает фотоны с энергией

Энергия Солнца

Момент количества движения приводит в затруднение, когда мы пытаемся объяснить далекое прошлое Солнечной системы, но в настоящее время нет никаких доказательств, что момент количества движения Солнечной системы не сохраняется. Однако, когда открыли закон сохранения энергии, он опирался на еще более шаткий фундамент. На Земле справедливость закона была, в самом деле, очевидной, но Солнце являлось постоянным убедительным свидетельством против него.

Самая очевидная характеристика этого тела — количество излучаемого света и тепла. Несмотря на то, что Солнце находится на расстоянии 150 000 000 км от Земли, оно освещает и согревает всю ее постоянно в течении всей истории. Один квадратный сантиметр поверхности Земли каждую минуту получает от полуденного Солнца 1,97 кал энергии в виде света и тепла. Эта величина, т. е. 1,97 кал/(см 2 мин), называется солнечной постоянной.

Площадь поперечного сечения Земли в плоскости, перпендикулярной идущей от Солнца радиации, равна приблизительно 1 280 000 000 000 000 000, или 1,2·10 18 см 2 [5]. Следовательно, полное излучение, попадающее каждую минуту на Землю, составляет приблизительно 2,51·10 18 кал. Но даже это число никоим образом не выражает всю радиацию Солнца. Солнце излучает энергию во всех направлениях, и только очень малая часть ее попадает на крошечную Землю. Вообразите огромную полую сферу с радиусом 150 000 000 км и с Солнцем в центре. Солнце освещало бы и нагревало каждую часть сферы, как Землю, а поверхность огромной сферы в два миллиарда раз превосходила бы поперечное сечение Земли. Это означает, что Солнце излучает в два миллиарда раз больше энергии, чем получает Земля. Полная энергия, излучаемая Солнцем равна 5,6·10 27 кал/мин. Сколько же энергии излучило Солнце за всю историю своего существования, если каждую минуту оно излучает в среднем 5,6·10 27 кал!

Тогда возникает критический вопрос: откуда берется вся эта энергия? Если закон сохранения энергии верен и для Солнца, невероятно огромные запасы энергии, извергаемые Солнцем в пространство, не могут возникать из ничего. Энергия только переходит из одной формы в другую, следовательно, солнечная радиация должна возникать за счет другой формы энергии. Но какой именно?

На первый взгляд кажется, что такой формой является химическая энергия. Горящий уголь, например, как и Солнце, выделяет свет и тепло, когда углерод угля и кислород воздуха, соединяясь, образуют двуокись углерода, Тогда, может быть, Солнце — огромный горящий кусок угля, и излучаемая им энергия получается за счет химической энергии?

Такое предположение легко опровергнуть. Химики знают совершенно точно, сколько энергии получается при сгорании данного количества угля. Предположим, что вся огромная масса Солнца (которая в 333 500 раз больше массы Земли) состоит из угля и кислорода и излучает каждую минуту 5,6·10 27 кал. Солнце тогда было бы действительно горящим углем, освещающим и обогревающим Солнечную систему. Какое время горел бы этот уголь, прежде чем на Солнце осталась только двуокись углерода? Ответ звучит довольно легкомысленно — в течение полутора тысяч лет!

Это очень маленький период времени. Он может охватить лишь часть истории цивилизованного человечества (о целых эрах до нее и говорить нечего). Так как Солнце сияло с такой же силой во времена расцвета Римской империи, с какой оно светит и сейчас, без дальнейших исследований мы утверждаем, что оно не может быть горящим углем, иначе к настоящему времени оно погасло бы. Действительно, пока неизвестна химическая реакция которая снабдила бы Солнце необходимой энергией даже на короткий период существования цивилизованного человечества.

Рассмотрим некоторые альтернативы химической энергии. Одной из них является кинетическая энергия.

На Земле проявление такой энергии случается каждый раз, когда в верхние слои атмосферы влетает метеорит. Его кинетическая энергия в результате сопротивления воздуха превращается в тепло. Даже крошечный метеорит размером с булавочную головку раскаляется до такой степени, что сияет на расстоянии в несколько километров. Метеорит, весящий 1 г и движущийся с обычной для метеоритов скоростью (скажем, 30 км/сек), имеет кинетическую энергию более чем 5·10 12 эрг, или около 120 000 кал. Такой же метеорит, падающий на Солнце, разгонялся бы гораздо большей гравитационной силой Солнца до гораздо большей скорости, чем на Земле, поэтому он передавал бы Солнцу значительно большую энергию. Подсчитано, что один грамм вещества, падающего на Солнце с большого расстояния, возместил бы 44 000 000 кал, потерянных Солнцем. Следовательно, если учесть всю энергию, излучаемую Солнцем, о для полной ее компенсации на него ежеминутно должно падать 1,2·10 20 г метеоритного вещества, т. е. более чем сто триллионов тонн вещества!

Расчет хорошо выглядел на бумаге, но астрономы отнеслись к этой ситуации с глубочайшим подозрением Во-первых, нет никаких доказательств, что Солнечная система настолько богата метеоритным материалом, чтобы каждую минуту снабжать Солнце сотней триллионов тонн вещества на протяжении многих исторических эр.

Во-вторых, если бы метеоритное вещество накапливалось на Солнце с такой скоростью, его масса увеличилась бы на один процент за 300 000 лет. Такое увеличение сильно повлияло бы на гравитационное притяжение Солнца, зависящее от его массы. Если бы даже масса Солнца возрастала столь медленно, Земля постепенно приближалась бы к нему и наш год все время укорачивался бы. Каждый год становился бы фактически на две секунды короче предыдущего, и астрономы немедленно зафиксировали бы этот факт. Но подобных изменений в длине года не наблюдали. Поэтому предположение о том, что метеориты служат источником солнечной радиации, отвергли.

К более приемлемой альтернативе пришел в 1853 году Гельмгольц — один из создателей закона сохранения энергии. Зачем рассматривать метеориты, падающие на Солнце, если может падать вещество самого Солнца? Поверхность Солнца отстоит от его центра на 696 000 км. предположим, что поверхность медленно опускается, причем кинетическая энергия этого падения может превратиться в излучение. Естественно, если бы с небольшого расстояния упал маленький кусочек солнечной поверхности, выделилось бы очень мало энергии. Однако если бы упала вся солнечная поверхность, т. е. если бы Солнце сжалось, энергия излучения была бы огромной. Гельмгольц показал, что скорость сжатия Солнца 0,014 см/мин достаточна для объяснения его радиации. Предположение было весьма заманчивым, ибо оно не требовало изменения солнечной массы и, следовательно, его гравитационного притяжения. Более того, изменение его диаметра в результате сжатия было бы небольшим.

За все шесть тысяч лет существования человеческой цивилизации диаметр Солнца уменьшился бы только на 900 км, т. е. весьма незначительно по сравнению с диаметром Солнца 1 400 000 км. За 250 лет, прошедшие со времени изобретения телескопа до работ Гельмгольца, диаметр Солнца сократился бы только на 37 км. Естественно, астрономы не заметили бы такого уменьшения.

Проблема солнечной радиации казалась решенной, если бы не одно серьезное упущение: Солнце излучало энергию не только в период существования человеческой цивилизации, но и в течение всего времени до того, как человек вообще появился на Земле. Во времена Гельмгольца никто точно не знал, как долго длился этот промежуток времени. Сам Гельмгольц чувствовал, что в исследуемом вопросе не все продумано до конца.

Читайте также:  Лето солнце жара как ее петь

Если бы солнечное вещество падало внутрь с большого расстояния, скажем, с земной орбиты, выделялось бы достаточно энергии, чтобы Солнце излучало ее с той же скоростью, что и сейчас, в течение 18 000 000 лет. Однако это означало бы, что возраст Земли не больше 18 000 000 лет, ибо она вряд ли существовала в своем теперешнем виде, когда вещество Солнца простиралось до областей, через которые теперь движется Земля. Геологи, изучавшие медленные изменения земной коры, казалось, неопровержимо доказали, что Земля существует не десятки, а сотни миллионов лет, возможно, даже миллиарды лет, причем все это время Солнце сияло с той же силой, c какой оно светит сейчас. В 1859 году английским натуралистом Чарльзом Робертом Дарвином была создана «теория эволюции путем естественного отбора». Если эволюция действительно происходила, а, по мнению биологов, она должна была происходить, то Земля существует по крайней мере сотни миллионов лет, все это время так же, как сегодня!

Следовательно, в течение второй половины XIX века применение закона сохранения энергии по отношению к Солнцу казалось спорным. Была предложена правдоподобная теория, которую астрономы не прочь были бы принять, но против которой энергично возражали геологи и биологи. Таким образом, было три альтернативы:

1. Закон сохранения энергии выполняется не везде во Вселенной, в частности не выполняется на Солнце.

2. Закон сохранения выполняется на Солнце, а геологи и биологи каким-то образом неправильно интерпретируют факты, которые они собрали, и Земля существует всего несколько миллионов лет.

3. Закон сохранения справедлив и для Солнца, но существует еще неизвестный науке источник энергии, который позволяет Солнцу излучать энергию с постоянной интенсивностью в течение миллиардов лет. Таким образом, физическая теория примиряется с точкой зрения геологов и биологов [6].

В течение пятидесяти лет, после того как Гельмгольц предложил свою теорию, правильного пути для выбора одной из этих трех гипотез не было найдено. Вопрос был решен благодаря открытиям в области предельно малых, а не предельно больших тел. Они принадлежат к микромиру, к рассмотрению которого мы теперь переходим.

Читайте также

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ — ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА

ИСТОЧНИК ЧЕЛОВЕЧЕСКОЙ ЭНЕРГИИ — ТРИ ПУТИ ПОЛУЧЕНИЯ ЭНЕРГИИ ОТ СОЛНЦА Во-первых, позвольте спросить: Откуда появляется движущая энергия? Что является источником, который все движет? Мы видим океан, который вздымается и опадает, текущие реки, ветер, дождь, град и снег,

ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ

ЭНЕРГИЯ ИЗ СРЕДЫ — ВЕТРЯК И СОЛНЕЧНЫЙ ДВИГАТЕЛЬ — ДВИЖУЩАЯ ЭНЕРГИЯ ИЗ ЗЕМНОГО ТЕПЛА — ЭЛЕКТРИЧЕСТВО ИЗ ЕСТЕСТВЕННЫХ ИСТОЧНИКОВ Есть множество веществ помимо топлива, которые возможно смогли бы давать энергию. Огромное количество энергии заключено, например, в

Смерть Солнца Порой ученые задаются

Смерть Солнца Порой ученые задаются вопросом: что в конце концов происходит с атомами нашего тела после смерти? Вполне возможно, что наши молекулы со временем возвращаются к Солнцу.Наше Солнце — звезда среднего возраста. Ей примерно 5 млрд лет, она, вероятно, останется

ЗАКАТ СОЛНЦА

ЗАКАТ СОЛНЦА Вы заметили, конечно, что когда солнце садится или восходит, оно кажется гораздо больших размеров, чем когда оно стоит высоко в небе. То же происходит и с луной. Это — обман зрения. Испытайте, сохраняется ли он, когда вы смотрите на заходящее солнце через

Глава 9 Проблемы нейтринного излучения Солнца

Глава 9 Проблемы нейтринного излучения Солнца До сравнительно недавнего времени одна из важнейших проблем астрономии — проблема внутреннего строения и эволюции звезд решалась совместными усилиями астрофизиков-теоретиков и астрономов-наблюдателей. Как уже

4.7. Измерение скорости света Солнца

4.7. Измерение скорости света Солнца В конце 40-х гг. ХХ века, во время подготовки в СССР дискуссии о сущности теории относительности, С. И. Вавиловым, президентом АН СССР, было решено поставить лабораторный опыт по проверке достоверности постулата с = const. В качестве

6.2. Отклонение луча света в поле тяготения Солнца

6.2. Отклонение луча света в поле тяготения Солнца «Первая проверка эйнштейновских предсказаний была осуществлена главным образом благодаря инициативе английского астронома Эддингтона 29 мая 1919 г. Две английские экспедиции были направлены для наблюдения полного

ЭНЕРГИЯ ИЛИ БОМБА?

ЭНЕРГИЯ ИЛИ БОМБА? 2.34. Предполагавшиеся военные преимущества урановых бомб внешне значительно эффектнее, чем преимущества использования урана в качестве источника энергии. Очевидно, что небольшое число урановых бомб может сыграть решающую роль в выигрыше войны

ЭНЕРГИЯ

ЭНЕРГИЯ За единицу энергии в ядерной физике принят электрон-вольт (eV), который определяется как кинетическая энергия, которую частица с зарядом электрона приобретает при свободном движении в поле с падением потенциала в один вольт. Часто удобнее применять в миллион раз

37. Что там, внутри Солнца?

37. Что там, внутри Солнца? Солнце — огромный шар из газа, имеющий 1,4 млн км в поперечнике. В основном оно состоит из водорода (75 %) и гелия (24 %).К центру плотность и температура значительно увеличиваются.Солнце не имеет нейтральных атомов. Атомные ядра (положительный заряд)

42. Зависит ли климат Земли от Солнца?

42. Зависит ли климат Земли от Солнца? Климат Земли управляется Солнечной энергией. Крошечные изменения в излучении солнечной энергии оказали бы драматическое влияние на погоду и климат.В течение своей жизни Солнце, как и все звезды, стало ярче и жарче. В далеком будущем

От Земли до Солнца

От Земли до Солнца Что может быть нежнее и тоньше паутинной нити? Тонкость ее вошла в поговорку, и недаром: нить паутины в десять раз тоньше волоса; поперечник ее равен только 0,005 мм. Этой необычайной тонкостью объясняется легкость паутины, потому что сам по себе материал

Орбита планеты и отсутствие солнца

Орбита планеты и отсутствие солнца Я определил подходящую для планеты Манн орбиту, руководствуясь двумя киноэпизодами.Во-первых, Дойл говорит, что путешествие к планете Манн займет месяцы. Отсюда вывод: когда «Эндюранс» прибывает к планете Манн, она должна

Источник

Главный источник свободной энергии

Наше Солнышко непрерывно излучает фотоны, радиусы (длины волн) и массы которых изменяются в интервале 16-ти порядков (табл. 2).

Считается, что Солнышко делает это уже около 6-ти миллиардов лет. Возникает естественный вопрос: чему равна общая масса фотонов, излучённых Солнцем за это время? Старые, ортодоксальные законы физики отрицают возможность получения ответа на этот вопрос, а новые законы микромира позволяют сделать это. Но мы теперь знаем, что фотоны (рис. 230, а) излучают электроны (рис. 230, b).

Читайте также:  Кто написал впечатление восход солнца

Рис. 230: а) схема излучения фотона (рис. 15) электроном;

b) схема модели электрона

Фотон – природное образование, которое в ряде экспериментов формирует картины, похожие на волны, образующиеся на поверхности воды, поэтому ему приписали волновые свойства. Из новой теории микромира следует, что фотоны всех частот имеют одну и ту же плоскую структуру из 6-ти замкнутых друг с другом магнитных полей, близкую по форме к кольцу (рис. 230, a). Все параметры такой структуры изменяются в интервале 16-ти порядков (табл. 2). Фотон движется в пространстве с одной и той же постоянной скоростью, равной скорости света , а центр его масс описывает волновую траекторию и генерирует при этом момент сил, вращающих фотон и силу, движущую его прямолинейно и равномерно. Теория этого процесса позволяет описывать его детально.

Чтобы не усложнять задачу, учтём пока массу фотонов только из середины светового диапазона (табл. 2). Они имеют зелёный цвет и их массы равны (табл. 2).

Науке известна мощность тепловых фотонов , излучаемых Солнцем на каждый квадратный сантиметр поверхности Земли. Конечно, это мизерная часть всего спектра фотонов, излучаемых Солнцем. Но для формирования начальных представлений о массе, уносимой фотонами (рис. 15 и 16), излучаемыми Солнцем, этого пока достаточно.

Поскольку фотон – корпускула, движущаяся в пространстве прямолинейно и равномерно с постоянной скоростью , то в соответствии с динамикой Ньютона сумма сил, действующих на фотон, равна нулю, и мы лишаемся возможности определить многие, нужные нам динамические и энергетические характеристики прямолинейно и равномерно движущегося фотона. Динамика Ньютона позволяет нам вычислить только кинетическую энергию фотона. Зная массу фотона из середины светового диапазона (табл. 2) – зеленого фотона, равную , определяем его кинетическую энергию

. (434)

Но нам нужно знать мощность, генерируемую равномерно и прямолинейно движущимся фотоном, а динамика Ньютона не позволяет нам вычислить её, так как согласно этой динамике, сумма сил, действующих на равномерно и прямолинейно движущуюся корпускулу – фотон, равна нулю. Законы же механодинамики утверждают, что, если корпускула движется прямолинейно и равномерно с постоянной скоростью , то численная величина его кинетической энергии, разделённая в любой момент времени на одну секунду, становится мощностью, генерируемой процессом равномерного прямолинейного движения корпускулы. С учётом этого имеем мощность, генерируемую зелёным световым фотоном, равную

. (435)

А теперь определим количество световых зелёных фотонов формирующих удельную тепловую мощность на каждом квадратном сантиметре поверхности Земли. Разделив тепловую мощность , формируемую световыми фотонами на каждом квадратном сантиметре поверхности Земли, на мощность одного (зелёного) фотона, получаем количество фотонов, излучаемых Солнцем на каждый квадратный сантиметр поверхности Земли в секунду

. (436)

Площадь сферы с орбитальным радиусом Земли, равна

.(437)

Количество фотонов, излучаемых Солнцем в секунду на внутреннюю поверхность сферы с орбитальным радиусом Земли, равно

. (438)

Масса световых зелёных фотонов, излучаемых Солнцем в секунду на внутреннюю поверхность сферы с орбитальным радиусом Земли, равна

. (439)

Наше Солнышко излучает в секунду количество только зелёных световых фотонов, общая масса которых равна 4,55 миллиона тонн. Страшная цифра. Масса световых фотонов, излучённых электронами Солнца за время его существования (6,50 млрд. лет), равна

. (440)

Обратим внимание на то, что для расчёта была взята масса одного фотона из всех 16-ти порядков фотонного спектра (табл. 2). А если учесть фотоны всех 16-ти порядков спектра, излучаемого Солнцем, то, на сколько порядков увеличится полученный результат (437)?Точный ответ пока трудно получить, так как не известна удельная мощность фотонов всех порядков, излучаемых Солнцем. Но и без этого ясно, что реальная суммарная масса фотонов всего солнечного спектра излучённая им за время существования Солнца, значительно больше, полученной величины (440).Так что есть основания полагать, что масса фотонов, излучённых Солнцем за время его существования больше массы современного Солнца

. (441)

Давно установлено, что фотоны излучают электроны при синтезе атомов, молекул и кластеров (рис. 215, 216).

Известно, что масса свободного электрона строго постоянна и равна , а масса, например, светового фотона равна . Из этого следует, что электрон может излучить световых фотонов. Известно также, что электроны атомов, например, спирали лампочки, излучают по световому фотону за одно колебание, то есть при частоте 50 Гц — 50 фотонов в секунду. Из этого следует, что электрон может перевести свою массу в массу световых фотонов за секунд или — за час.

Таким образом, если электрон не будет восстанавливать свою массу для сохранения стабильности, после излучения фотонов, то он исчезнет через час. Необычный результат. Из него следует, что электроны, излучив фотоны, немедленно восстанавливают свои массы. Источник один – окружающая среда, заполненная субстанцией, которую мы называем эфиром.

Если бы электроны атомов Солнца не восстанавливали свои массы после излучения фотонов, которые греют нас, то трудно даже предсказать его судьбу. Мы только сейчас начинаем понимать, что электрическая энергия, потребляемая лампочкой, расходуется на процесс преобразования энергии эфира в полезные для нас тепловые и световые фотоны.

Сразу возникает вопрос: как заставить электроны работать экономнее и давать нам тепловой и электрической энергии больше той, которую мы расходуем, заставляя их преобразовывать энергию эфира в энергию тепловых фотонов?

Мы уже привели серию экспериментальных ответов на этот вопрос в виде первых работающих моделей эффективных импульсных электромоторов-генераторов, а также вечных двигателей и электрогенераторов. Есть и теория, которая позволяет описывать детали этих процессов и, таким образом, — правильно интерпретировать результаты текущих экспериментов и понимать пути улучшения их показателей.

Итак, мы изложили новые знания по экономной генерации электрической энергии. В следующей главе представим новые знания об экономном извлечении энергии из воды – самого распространённого носителя экологически чистой тепловой энергии, а также водорода и кислорода.

1. Где берут электроны Солнца массу для излучённых фотонов?Источник один – разряженная субстанция, равномерно заполняющая всё космическое пространство, названная эфиром.

2. Значит ли это, что электрон после каждого излучения фотона восстанавливает свою массу, поглощая эфир?Это пока единственная приемлемая гипотеза, которая помогает получить ответы на обилие других вопросов о микромире.

3. Следует ли из приведённых фактов, что основным источником тепловой энергии является разряженная субстанция физического вакуума, называемая эфиром?Пока это — гипотеза, но обилие существующих и последующих экспериментальных фактов будет усиливать её достоверность. И недалёк тот день, когда мировое научное сообщество будет вынуждено признать эту гипотезу достоверным научным постулатом.

4. Почему реликтовое излучение имеет наибольшую интенсивность в миллиметровом диапазоне? Реликтовое излучение (рис. 227) формируется процессами излучения фотонов при синтезе атомов. При этом максимальное количество фотонов, заполняющих космическое пространство, излучается с радиусом (длиной волны), равным (рис. 227, а).

5. Какой источник формирует реликтовое излучение? Источником реликтового излучения являются звезды Вселенной.

6. Какой процесс формирует максимум реликтового излучения? Максимум реликтового излучения формирует процесс рождения атомов водорода в звездах Вселенной.

Читайте также:  Сравните по продолжительности полное затмение солнца видимое с земли

7. Почему реликтовое излучение формируется процессом синтеза атомов водорода?Потому что количество водорода во Вселенной 73%, гелия 24% и 3% — всех остальных химических элементов. К тому же энергии связи электронов атома гелия с его ядром близки по значению к энергии связи электрона атома водорода с протоном. В результате процесс синтеза атомов гелия также вносит свой вклад в формирование реликтового излучения (рис. 227).

8. Почему реликтовое излучение формируется при температуре, близкой к абсолютному нулю? Потому что в единице объёма Вселенной максимальное количество фотонов имеют радиусы, близкие к их максимальным значениям. В Природе нет большего количества фотонов с большими радиусами для формирования более низкой температуры.

9. Связано ли реликтовое излучение с Большим взрывом? Реликтовое излучение не имеет никакого отношения к вымышленному Большому взрыву.

10. Какова природа всего диапазона реликтового излучения? Диапазон реликтового излучения формируется процессами рождения атомов и молекул водорода и процессами их охлаждения и сжижения.

11. Сколько максимумов имеет зона реликтового излучения? Три явных максимума А, В и С (рис. 227). Максимум А формирует процесс рождения атомов водорода при удалении от звёзд свободных электронов и протонов.

12. Какие процессы формируют другие два максимума (В и С) реликтового излучения с меньшей интенсивностью и меньшей длиной волны (рис. 227)? Два других максимума (рис. 227, В и С,) формируются процессами рождения и сжижения молекул водорода. Известно, что атомарный водород переходит в молекулярный в интервале температур . Длины волн фотонов, излучаемых электронами атомов водорода при формировании его молекулы, будут изменяться в интервале . Это — границы максимума излучения Вселенной, соответствующего точке С (рис. 227). Далее, молекулы водорода, удаляясь от звезды, проходят зону температур, при которой они сжижаются. Она известна и равна Т=33К. Поэтому есть основания полагать, что должен существовать ещё один максимум излучения Вселенной, соответствующий этой температуре. Радиус фотонов (длина волны), формирующих этот максимум, равен . Этот результат совпадает с максимумом в точке (рис. 227).

13. Что является причиной анизотропии реликтового излучения, и какое глобальное следствие следует из этого?Поскольку зафиксировано отсутствие реликтового излучения, которое занимает менее 1% сферы Вселенной, то это указывает на наличие в ней зон без звёзд и галактик и может быть отождествлено с локализацией материального мира во Вселенной.

14. Почему с уменьшением длины волны реликтового излучения резко увеличиваются расхождения между экспериментальными и теоретическими результатами (рис. 227)? Потому, что с уменьшением длины волны излучения резко увеличивается разность плотности таких фотонов во Вселенной, как в полости черного тела, для которого выведена формула Планка, которая даёт теоретическую зависимость (рис. 227 – тонкая линия).

15. Чему равна максимальная температура во Вселенной, и можно ли определить это теоретически и экспериментально? Современная наука не имеет точных ответов на эти вопросы.

16. Почему все звёзды излучают непрерывный спектр со всеми цветами радуги?Потому что энергии связи всех электронов атомов, соответствующие первым энергетическим уровням, сдвинуты друг относительно друга на небольшие величины. Например, энергии связи первых электронов, первых химических элементов, соответствующие первым энергетическим уровням, имеют такие значения. У атома водорода E1=13,598eV; у атома гелия E1=13,468eV; у атома лития E1=14,060eV; у атома бериллия E1=16,170eV; у атома бора E1=13,350eV и так далее. Вполне естественно, что сдвинуты энергии связей всех остальных электронов каждого атома не только на первых, но и на всех остальных энергетических уровнях. В результате и формируется сплошное излучение со всеми цветами радуги.

Ученые Института космических исследований РАН и Московского физико-технического института зафиксировали возможное разрушение звезд сверхмассивными черными дырами (фото на рис. 231).

Результаты своих исследований Ильдар Хабибуллин и Сергей Сазонов изложили в статье, доступной в форме препринта на сайте arXiv.org, а кратко с ее содержанием можно ознакомиться на сайте МФТИ. Вот фото РАНовской «Чёрной дыры» (рис. 231).

Рис. 231. Фото РАНовской «Чёрной дыры» и Цвета радуги

Физики обнаружили три звезды-кандидата на разрушение сверхмассивными черными дырами: 1RXS J114727.1+494302, 1RXS J130547.2+641252 и 1RXS J235424.5-102053. Также имеется и четвертая звезда 1RXS J112312.7+012858 — кандидат на разрушение черной дырой, однако собранной для нее статистики недостаточно, чтобы быть уверенными в этом.

Разрушение звезд сверхмассивными черными дырами происходит с частотой примерно один раз в несколько тысяч лет, когда звезда проходит слишком близко от нее. В таком процессе за несколько лет черная дыра срывает со звезды вещество, масса которого оценивается примерно в четверть от ее первоначальной и разрывает ее своим гравитационным полем.

Данное событие сопровождается мощным рентгеновским излучением, которое необходимо отличить от фоновых излучений от других источников. В своей работе ученые использовали данные с орбитальных обсерваторий ROSAT и XMM-Newton, полученные в общей сложности за последние 30 лет.

Ожидается, что существенный прогресс в обнаружении разрушения звезд сверхмассивными черными дырами будет достигнут введением в эксплуатацию новых телескопов, в частности, российской космической обсерватории Спектр-Рентген-Гамма, которую планируется запустить в 2016 году.

Итак, проведём краткий научный экспертный анализ РАНовской «Черной дыры» (рис. 231). Сразу обращаем внимание на чёткость «Чёрной дыры» на туманном фоне скопления звёзд. Первый и главный вопрос: чему равны длины волн фотонов, принёсших столь чёткий контур «Чёрной дыры»? На рис. 231 цвета радуги. Справа – полоса чёрного цвета близкого к цвету РАНовской «Чёрной дыры» (рис. 231). В табл. 2 – характеристики фотонов всех диапазонов.

Тёмный цвет «Чёрной дыры» формирует совокупность световых фотонов с максимальной длиной волны световых фотонов, равной (табл. 2). Это они принесли образ «Чёрной дыры» в телескоп. Если бы гравитационное поле «Чёрной дыры» задерживало бы эти фотоны, то никакого образа этой дыры не было бы в Телескопе. Радиус «Чёрной дыры» рассчитывается по формуле

. (442)

Здесь — гравитационная постоянная; — масса звезды; — скорость света; — длина волны фотонов, задерживаемых гравитационным полем «Чёрной дыры». Поскольку «Чёрная дыра» на (рис. 231) видима и имеет чёрный цвет, то это — цвет фотонов, которые она не может задерживать, и они несут её образ в телескоп. Это значит, что в формулу (442) надо вводить максимальную длину волны чёрного фотона с радиусом

Таким образом, в формуле (442) остаются неизвестными ещё две величины: гравитационный радиус «Чёрной дыры» и её масса . В результате у нас появляется возможность задаться одной из этих величин и вычислить вторую. Авторы результатов наблюдений утверждают, что масса массивных «Чёрных дыр» может достигать массе 1000000 Солнц. Масса Солнца равна , а масса миллиона Солнц будет такой . Тогда гравитационный радиус РАНовской т «Чёрной дыры» будет равен

(443)

Вряд ли такую «Чёрную дыру» можно увидеть с планеты Земля на столь большом расстоянии от неё.

Источник

Adblock
detector