Применение солнечной энергии как альтернативного источника
Здесь вы узнаете:
Солнечная энергия — восполнимый и бесплатный ресурс, который в последние годы особенно активно осваивается. Существуют солнечные электростанции, гелиотермальные электростанции и небольшие бытовые солнечные батареи.
Что такое солнечная энергия
Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.
Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.
Солнечная энергия является источником возобновляемой и экологически чистой энергии.
Как можно оценить величину солнечной энергии
Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.
Распределение солнечного излучения на карте планеты
Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов H2 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма H2 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.
Преобразование солнечной энергии в электричество
Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.
В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.
Фотовольтарика
В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.
Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.
Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.
А вот как устроен отдельный модуль солнечной панели:
Гелиотермальная энергетика
Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.
По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.
Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.
Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.
Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.
Солнечный свет концентрируется на башне
Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.
Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.
Солнечные аэростатные электростанции
Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.
Сама установка состоит из 4 основных частей:
- Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
- Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
- Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
- Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.
Плюсы и минусы солнечных электростанций
Достоинства:
- Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
- Солнечные установки достаточно безопасны в использовании.
- Подобные электростанции являются полностью автономными.
- Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
- Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
- Они не прихотливы в обслуживании и достаточно просты в использовании.
- Также для оборудования СЭС характерный долгий эксплуатационный период.
Недостатки:
- Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
- Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
- Очень высокая и малодоступная стоимость оборудования для солнечных установок.
- Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
- Значительное повышение температуры воздуха в пределах электростанции.
- Потребность в использовании местности с огромной площадью.
- Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.
Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.
Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.
Проблемы использования солнечной энергии
Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.
Использование солнечной энергии в быту
Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.
Солнечная энергия – это отличный источник для таких процессов:
- Пассивный обогрев и охлаждение дома. Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.
- Нагрев воды с помощью солнечной энергии. Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.
- Освещение улиц. Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.
Использование солнечной энергии в химическом производстве
Солнечная энергия может применяться в различных химических процессах. Например:
- Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
- Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).
Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.
Электротранспорт на солнечных батареях
Постепенно идёт внедрение солнечных батарей на автомобильном транспорте. Образцы, которые целиком работают от солнечных батарей, пока ещё существуют только в виде концепт-каров. Использование их в массовом масштабе на данный момент невозможно.
В них гелиопанели устанавливаются на поверхность кузова и заряжают аккумуляторы. Те, в свою очередь, обеспечивают питание электромотора. Использование батарей в серийных моделях ограничивается тем, что их используют для питания отдельных узлов автомобиля. Подробнее читайте в статье «Солнечная энергия в автомобилестроении».
Перспективы развития
Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.
Источник
Солнце как альтернативный вид энергии
ЭНЕРГИЯ СОЛНЦА — АЛЬТЕРНАТИВНЫЙ ИСТОЧНИК ЭНЕРГИИ
Автор работы награжден дипломом победителя III степени
Энергия Солнца является источником жизни на нашей планете: Земля и ее атмосфера прогреваются, дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения…
Солнечная энергия может быть преобразована, например, в движущую силу и электричество.
Как известно, запасы нефти и газа небезграничные, поэтому разработки в использовании альтернативных источников энергии – основа жизнеобеспечения жителей планеты.
По разным данным, человечество успело израсходовать свыше 65% мировых запасов нефти. Ежедневно в мире расходуется нефти почти в 5 раз больше, чем удается найти ее в новых месторождениях. По самым оптимистичным прогнозам, запасов, не возобновляемых источников энергии, хватит на 30 – 70 лет! [1]
Численность населения планеты составляет свыше 7 млрд. человек. При любом подсчете ресурсов Земли она не сможет прокормить более 10-12 млрд. человек!
Вопрос об использовании энергии Солнца, как возможности экономного использования природных ресурсов для сохранения и дальнейшего развития человеческого общества и определил актуальность темы исследования.
Объект исследования — изучение разработок ученых-исследователей и расчетных данных, связанных с энергетическим ресурсом Солнца.
Предмет исследования – излучение Солнца, как перспективный и альтернативный источник энергии.
Цель исследования – рассмотреть современные достижения и перспективы использования энергии Солнца, в ходе самостоятельных экспериментов установить факторы, влияющие на величину фототока, найти способ использования солнечных модулей в домашних условиях.
Методы исследования — классификация, систематизация, описание, сравнение.
Работа включает введение, 2 главы, заключение, список использованной литературы, приложение.
В первой главе освещаются вопросы альтернативного и технического использования солнечной энергии, затронуты вопросы экологии.
Во второй главе представлены результаты эксперимента по изучению зависимости генерируемой фотоэлементамисолнечной энергииот внешних факторов, использованиеее в технических устройствах, сделанных самостоятельно.
В заключение даются краткие выводы и перспективы использования солнечной энергии для развития цивилизации.
Глава 1. Применение энергии Солнца
1.1. Пассивное использование солнечной энергии
«Солнце … является неисчерпаемым источником
физической силы… та непрестанно заводящаяся
пружина, которая поддерживает в состоянии
движения механизм всех происходящих на Земле
(Роберт Майер, 1845г.)
Восемь минут – время, через которое солнечный свет достигнет Земли. Знаменательных восемь минут, которые стали основой жизни на единственной обитаемой планете в нашей Галактике.
Солнечный свет – это неиссякаемый источник энергии. Для понимания, на сколько велик запас солнечной энергии приведу несколько цифр: мощность солнечного излучения составляет 3,8*10 26 Вт каждую секунду, что равносильно тому, как если бы за это время сжигали 1,3*10 16 тонн угля!
Если бы Солнце светило за счет горения угля, то при массе 2*10 30 кг просуществовало, лишь 5 тысяч лет!
Не менее интересны и процессы, которые происходят на Солнце и обеспечивают такой запас энергии: на 1 млн. атомов водорода приходится 98 тыс. атомов гелия, 851кислорода, 398 углерода, 123 неона, 100 азота, 47 железа, 38 магния, 35 кремния, 16 серы, 4 аргона, 3 алюминия, по два атома никеля, натрия и кальция, и иных элементов.
Расчеты показывают, чтобы обеспечить мощность ежесекундного излучения 3,8*10 26 Вт, в недрах Солнца каждую секунду должно сгорать 630млн.т. водорода, а масса Солнца должна будет уменьшиться при этом на 4,2млн.т. и в виде фотонов рассеется в мировом пространстве.
Несмотря на колоссальность излучаемой энергии, Солнце горит очень экономно и удельная мощность равна 1,9*10 -7 Вт/г, что в 50млрд. раз меньше удельной мощности горящей спички (10 4 Вт/г) и в 10 тыс. раз уступает удельной мощности человека (2*10 -3 Вт/г).
Наше Солнце образовалось из космической пыли около 5млрд. лет назад. Через 5-7млрд. лет оно истощит запасы водорода и перейдет в стадию гелиевого горения – с этого момента его дни сочтены [2].
Киловатт-час — это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Энергия, излучаемая Солнцем, ежесекундно составляет 1,1*10 20 кВт/ч. Этой энергии хватило бы, примерно, на 13*10 16 лет работы такой лампочки! Интерес человечества к использованию энергии Солнца, таким образом, совершенно очевиден.
Привлекательность использования солнечной энергии связана с возможностью преобразования ее в различные формы энергии, используя активные и пассивные солнечные системы.
1. Теплоснабжение с использованием солнечных коллекторов – нагревателей, устанавливаемых неподвижно на крышах домов под определенным углом к горизонту. Больше всего таких установок теплоснабжения имеют США и Япония, но самая высокая плотность их из расчёта на душу населения достигнута в Израиле и на Кипре.
Экономическая выгода от использования коллекторов для нагревания воды, перед подачей в бойлер — достигает 50-70%!
Обычно солнечный коллектор представляет собой металлические пластины или трубки, окрашенные в черный цвет для наибольшего поглощения энергии солнечного излучения, фактически – это минитеплица, которая накапливает энергию под стеклянной панелью, под которую и помещают трубки или пластины. [6] (Приложение 1)
Если говорить о конструкции солнечных коллекторов, то в ней учитывают непосредственное их назначение:
● низкотемпературные коллекторы обеспечивают прогревание воды до 50 0 С и используются там, где требуется не очень горячая вода (бассейн)
●среднетемпературные коллекторы производят высоко- и средне потенциальное тепло (выше 50 0 С, обычно 60-80 0 С).
● вакуумированный трубчатый коллектор используется для нагрева воды в жилом секторе. Высокотемпературные коллекторы представляют собой параболические тарелки и используются в основном электрогенерирующими предприятиями для производства электричества для электросетей. [5]
2. Преобразование солнечной энергии в электрическую с помощью солнечных батарей на кремниевой основе. Первая такая электростанция была сооружена в Калифорнии в 1981 г.
3. Сооружение электростанций башенного или параболического видов.
Вообще, энергию Солнца использовали для обогрева домов с незапамятных времен. В древней Греции солнечный коллектор для прогрева воды был сконструирован в XIX веке. В 100 году н. э. историк Плиний Младший построил летний домик в Северной Италии, в одной из комнат которого были окна из тонкой слюды, обращенные на юг. Комната была теплее других, и для ее обогрева требовалось меньше дров. В известных римских банях в I-IV ст. н. э. специально устанавливались большие окна, выходящие на юг, для того чтобы больше солнечного тепла поступало в здание. К VI ст. солнечные комнаты в домах и общественных зданиях стали настолько обычны, что Джастиниан Коуд ввел «право на солнце», чтобы гарантировать индивидуальный доступ к солнцу.
Из-за перебоев с электроэнергией во время второй мировой войны к концу 1947 года в Соединенных Штатах здания, пассивно использующие солнечную энергию, пользовались таким огромным спросом, что «Libbey-Owens-Ford Glass Company» издала книгу под названием «Ваш Солнечный Дом», в которой были представлены 49 лучших проектов солнечных зданий. В середине 50-х годов ХХ века, архитектор Франк Брайдджерс разработал первое в мире пассивное солнечное здание для офисного помещения. Установленная в нем солнечная система для горячего водоснабжения работает с того времени бесперебойно. Само же здание «Брайдджерс-Пэкстон» занесено в национальный исторический регистр страны как первое в мире офисное здание, обогреваемое при помощи энергии Солнца. [4]
1.2. Активное использование солнечной энергии.
Гениальным воплощением научной мысли в техническом устройстве по праву можно считать фотоэлементы – устройства прямого преобразования световой или солнечной энергии в электроэнергию.
История фотоэлементов берет начало с 1893г., когда Александр Эдмон Беккерель открыл фотогальванический эффект. В 1953г. Джеральд Персен проводя опыты в лаборатории, случайно, установил, что кремний, покрытый определенными примесями более чувствителен к свету, нежели селен. С этого момента было положено начало освоению нового источника энергии – солнечной!
В период нефтяного кризиса (1973-74г.г.), в нескольких странах, сразу же, были запущены программы по использованию фотоэлементов, некоторые из которых до сих пор находятся в эксплуатации.
Фотоэлементы составляют основу фотоэлектрических батарей. Спектр применения, которых широк и разнообразен: от исследования космического пространства до электроснабжения жилых домов!
Ограничение связано с суточным вращением Земли, погодными условиями, загрязнением рабочей поверхности фотоэлемента.[9]
В основе работы солнечных батарей лежат физические свойства полупроводников, а производятся они из сверхчистого кремния, смешанного в точной пропорции с другими веществами. Подробное рассмотрение генерирования электроэнергии в фотоэлементах можно найти на страницах любой научно популярной литературы.
Рис. 2 Строение кремниевого фотоэлемента
Отмечу, что на современном этапе, уже решен вопрос как самой аккумуляции солнечной энергии, так и независимость используемых фотоэлементов от угловой высоты Солнца, времени года и освещенности.
Расчеты показывают, что расположение солнечных модулей под углом 45 0 на крышах зданий обеспечивает максимальное преобразование солнечной энергии в электрическую.
Просматривая различные источники, мы убедились, что преобразование солнечной энергии в электрическую – перспективное направление современной энергетики, и прежде всего потому, что Солнце, по прогнозам ученых, еще несколько миллиардов лет будет согревать нашу планету.
1.3 Альтернативные источники энергии и вопросы экологии
Энергия Солнца, разумеется, не требует никаких затрат на свое производство, но устройства, которые будут преобразовывать энергию Солнца в электрическую или накапливать ее — способны нанести вред окружающей среде.
1. Модули, генерирующие световую энергию в электрическую, располагаются на поверхности Земли. Поверхностный слой – основа сельскохозяйственной деятельности, и выделение участков под такие модули способно нанести урон сельскому хозяйству. Также придется сократить парковую зону, места отдыха…
2. Производство самих солнечных батарей относят к очень токсичному производству, а значит предположение о том, что выбросов вредных веществ в атмосферу Земли можно будет исключить – ошибочное.
3. Любое оборудование способно прийти в негодность и спустя 20 лет придется решать вопрос его утилизации.
4. Смена дня и ночи требует использовать накопители солнечной энергии — аккумуляторы. Утилизация отработанных аккумуляторов, их возможное накопление на свалках – приведет к существенному загрязнению природы.
По мнению академика П.Л.Капица, «применение фотопреобразователей с высоким КПД может привести к понижению температуры, из-за которого начнется конденсация водяного пара в атмосфере и соответственно прекратят работу фотоприемники. Если ограничить КПД пятнадцатью процентами (уровень лучших современных преобразователей), то туман не будет появляться, но тогда под солнечные станции придется отчуждать еще более гигантские территории. Можно думать, что климат на этих территориях станет прохладнее». [16]
Как видим, использование солнечных батарей не решает возникающих и уже существующих экологических проблем.
Но нельзя не принять и тот факт, что применение солнечных батарей в небольших масштабах позволяет, все же, экономить запасы топлива.
Глава II . Влияние внешних факторов на величину фототока и приведение в действие электрических приборов от накопленной солнечной энергии – самостоятельные исследования.
«По данным Института Энергетической стратегии, теоретический потенциал солнечной энергетики в России составляет более 2300 млрд. тонн условного топлива, экономический потенциал – 12,5 млн. т.у.т.
Потенциал солнечной энергии, поступающей на территорию России в течение трех дней, превышает энергию всего годового производства электроэнергии в нашей стране.
Наша страна расположена между 41 и 82 градусами северной широты и уровень солнечной радиации существенно варьируется: от 810 кВт-час/м 2 в год в отдаленных северных районах до 1400 кВт-час/м 2 в год в южных районах. На уровень солнечной радиации оказывают влияние и большие сезонные колебания: на ширине 55 градусов солнечная радиация в январе составляет 1,69 кВт-час/м 2 , а в июле – 11,41 кВт-час/м 2 в день.» [12]
Целью самостоятельных исследований являлось определение факторов, от которых зависит величина фототока и возможность ответить на вопрос: «следует ли отказаться от традиционных источников энергии в пользу солнечной радиации?».
В качестве источника излучения рассматривался естественный свет.
Экспериментальное оборудование включало фотоэлемент, прибор для измерения фототока, светонепроницаемая бумага, линейка. Эксперименты проводились с лабораторным оборудованием в кабинете физики намеренно в пасмурный день.
Эксперимент 1. Влияние освещенности фотоэлемента на величину фототока.
Гипотеза: если фотоэлемент преобразует энергию Солнца в электрическую, то величина фототока зависит от освещенности.
Ход эксперимента. Установка располагалась на одном и том же расстоянии от источника света. Эксперимент проводился в два этапа. В первом случае, свет проходил через оконное стекло, а во второй раз — через оконное стекло с москитной сеткой. Сетка моделировала ситуацию «помехи» (пыль). В обоих случаях замерялась величина фототока.
Вывод. Величина фототока будет уменьшаться при увеличении загрязнения поверхности солнечной батареи.
Оконное стекло без москитной сетки
Оконное стекло с москитной сетки
Эксперимент 2. Влияние освещенности фотоэлемента на величину фототока.
Гипотеза: если фотоэлемент преобразует энергию излучения в электрическую, то величина фототока зависит от освещенности.
Ход эксперимента. Установка располагалась на одном и том же расстоянии от источника света. На фотоэлемент не попадали прямые лучи света. Для увеличения освещенности использовали лист белой бумаги. Проходящий, через оконное стекло, свет отражался от листа бумаги и попадал на фотоэлемент. В ходе эксперимента лист смещали на 5см.
Вывод. Величина фототока уменьшается при увеличении расстояния от источника отраженного света до фотоэлемента.
Источник