Меню

Солнце освещает землю это точечный источник света

Солнце освещает землю это точечный источник света

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.

Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.

Алгоритм настройки:

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)

    После чего мы увидим все настройки принтера.
  2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  5. Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.

    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Источник

    Физика

    Световые явления. Часть 1

    План урока:

    Что такое свет? Источники света

    Много тысячелетий прошло прежде, чем была выяснена природа этого замечательного явления – свет. Десятки гипотез, предположений, догадок выдвигались учеными. Но вот в конце девятнадцатого века Д. Максвелл и Г. Герц установили, что природа света электромагнитная.

    Значение света в жизни человека и в природе громадно. Зарождение и развитие всего живого происходит под влиянием тепла и, конечно, света.

    Свет для человека – важнейшее средство познания окружающего мира.

    Основной источник света для всей Земли – это Солнце. Световые потоки устремляются к планетам от Солнца благодаря ядерным реакциям, происходящим на нем.

    При изучении тепловых явлений одним из видов теплообмена названо излучением, с помощью которого Земля получает от Солнца тепло. Тепло невидимо. Та часть излучения, которая видима глазом человека, называется видимым излучением.

    Именно это излучение рассматривается как световое явление.

    Раздел физики, посвященный световым явлениям называют оптикой (греч. «оптикос» — «глаз», «зрительный», «видимый»).

    Не умея объяснить природу света, многие древние ученые придерживались мнения о том, что световые лучи исходят из глаз человека и «ощупывают» все вокруг. Некоторые считали, что есть другое объяснение свету, но не могли его сделать, не зная теории электромагнетизма. Как же далеки были эти люди от современных знаний в оптической области физики.

    Сейчас известна природа света, свойства его, строение глаза, создано большое число оптических устройств и простых приборов. Световые явления широко используются в жизни человека.

    Создается световое излучение источниками света, которые бывают естественными и искусственными. Сама природа создала естественные источники света. Искусственные источники придумал и изготовил человек.

    Естественные (природные) источники света:

    • Солнце и другие звезды;
    • молния;
    • полярные сияния;
    • светящиеся вещества (фосфор, радий, актиний и другие);
    • насекомые (например, светлячки, грибные комары);
    • морские животные (медузы, электрические скаты, угри и другие);
    • старые гниющие пни;
    • светящиеся грибы.

    Среди таких источников есть яркие, дающие много света, а есть едва видимые в темноте.

    Например, науке известно уже около семидесяти видов светящихся грибов. Из них некоторые можно увидеть ночью на расстоянии десяти метров.


    Светящиеся грибы.

    Светиться могут подгнившие грузди и старые сыроежки.


    Подкрашенный фосфором циферблат часов.


    Светящиеся медузы.

    Искусственные источники света:

    • всевозможные фонари и лампы;
    • прожекторы и маяки;
    • экраны телевизоров, проекторов;
    • гаджеты;
    • светящиеся рекламы;
    • свечи.


    Ночной город.

    Не может деятельность человека протекать без освещения. Трудно представить современный город в ночное время без освещенного дома, улицы, квартиры.


    Созданные человеком источники света.

    Искусственное освещение создано человеком лишь благодаря научному подходу к изучению таких интересных явлений природы – световых.

    Распространение света

    Чтобы лучше понять, как свет распространяется, введено понятие светового луча. А там, где лучи, там геометрия. Поэтому появился новый подход к световым явлениям, который называется геометрическая оптика.

    Для практического изучения света учеными рассматриваются узкие пучки световых лучей. Для их получения используют непрозрачные экраны с отверстиями.

    Каковы же главные законы, по которым свет распространяется?

    Один из них подтверждается достаточно легко. Человек, который не хочет, чтобы яркий свет бил ему в глаза, приставляет ко лбу ладонь. Он видит окружающие предметы, а свет прямо в глаза ему не попадает.

    Это говорит о том, что свет не может обогнуть ладонь и попасть в глаза наблюдателю. Этот пример показывает, что свет идет по прямой.

    Значит, существует закон прямолинейного распространения света. Он звучит так:

    Как на рисунке, луч света не пойдет. Он не может огибать препятствия.

    Первая научная формулировка этого важного закона была дана в третьем веке до нашей эры Евклидом.

    В соответствии с этим законом свет в одной и той же среде не может идти по ломаной траектории и огибать препятствия. Отсюда вытекает понятие тени. Тень сопровождает человека всюду.


    На экране тень и полутень. Источник

    Если поместить между источником света предмет, например, шар, он перекроет путь световых лучей. За шаром на экране в центре тень более темная, чем по краям. Почему так?

    Объяснить это можно, проведя два эксперимента.

    Первый. Источник по своим размерам очень мал по сравнению с шаром и расстоянием до экрана. Такой источник света называют точечным. Пусть это будет светящаяся точка А. Та часть прямых лучей, которая упирается на шар не дойдет до экрана, и в соответствующей области его образуется темное пятно – тень. Лучи, идущие выше и ниже шара достигают цели и на экране в этой области светло.

    Второй эксперимент. Берется источник света большой или сравнимый с предметом, помещенным между источником и экраном. Такой источник содержит огромное число светящихся точек, испускающих лучи. Из каждой точки, которые находятся между А и В выходит такой же пучок света, как и в первом эксперименте.

    Потоки лучей из разных точек источника устремляются к экрану, но доходят до него не все. Мешает шар, дающий для каждого потока свою тень. Все тени пересекаются в центре экрана и образуют общее темное пятно – общую тень. Вокруг нее образуется область размытая, куда от одних точек свет попадает, а от других нет – это полутень.

    Природа предоставила человеку яркий пример распространения света, который очень напоминает второй эксперимент. Это солнечные и лунные затмения.


    Солнечное затмение.

    Они происходят, когда Солнце, Луна и Земля, двигаясь по законам Солнечной системы, выстраиваются в одну линию, как показано на схемах.


    Схема солнечного затмения. Источник


    Схема лунного затмения. Источник

    Затмения для науки представляют большой интерес, особенно солнечные. Они позволяют наблюдать, хоть и кратковременно, состояние солнечной атмосферы, процессы внутри ее и состав.

    Отражение света и его законы

    Наверное, нет человека, который бы не наблюдал одно из явлений. Снежинки попадают в свет фар автомобиля или солнечные лучи попадают в запыленную комнату, или солнце освещает влажный воздух леса.

    Сами снежинки не являются источниками света, но человек их видит. Но видит только те, которые падают на землю в свете фар. Падающий снег за пределами автомобиля человеческий глаз не фиксирует.

    В пыльной комнате наблюдается плавное движение мелких пылинок в том месте, где через окно проникает солнечный свет. Но ведь это не значит, что пыль в комнате находится только там, где лучи света. Пылинки летают по всей комнате, но не видны глазом.

    В утреннем влажном лесу там, куда прокрадываются яркие лучи, становятся видны мельчайшие капельки воды и лесные пылинки. Они тоже есть по всему лесу, но видны только, где свет.

    Эти явления объясняются тем, что человеческий глаз воспринимает свет, идущий от источника или отраженный от освещенного тела.

    Если взять в темноте лист бумаги, то сказать, какого цвета этот лист, невозможно. Лист – не источник света и не освещен, поэтому он невидим. Другое дело, если лист попал в руки в светлом помещении. Человек его видит, так как бумага отражает световые лучи, отраженные лучи уже попадают в глаз.

    Так снежинки в свете фар, капельки воды и пылинки на свету отражают лучи света, которые и воспринимает человек.

    Приведенные примеры показывают, что свет обладает свойством отражения. Как и прямолинейность распространения света, древнегреческим ученым Евклидом был открыт первый закон отражения света. «Световые лучи обратимы» — утверждали древние ученые. Современная трактовка закона следующая:

    Для экспериментального подтверждения этого закона используется устройство, называемое оптическим диском.


    Оптический диск.

    На светлый круг этого прибора нанесена шкала с градусами. Яркая лампочка осветителя находится в светонепроницаемом футляре с очень узким отверстием. В центре диска прикрепляется отражающая поверхность, например, зеркальная пластинка. Осветитель имеет возможность перемещаться вокруг диска.

    Из осветителя луч света от лампочки падает на пластинку и отражается от нее. Если переместить осветитель, направление падения луча света изменится. Соответственно изменится и направление отражения света. Но все это происходит в одной плоскости диска, что подтверждает первый закон отражения света.

    При сравнении углов, которые образуются световыми лучами в этих опытах, подтверждается второй закон отражения света. Но прежде, чтобы его понять, следует изучить геометрическую схему отражения света.

    На схеме представлен геометрический подход к изучению световых явлений. Пучки света заменены геометрическими лучами и добавлены некоторые геометрические элементы, нужные для исследования.

    • α – угол падения;
    • β – угол отражения.
    • прямая MN – плоскость отражения;
    • СО – перпендикуляр к поверхности отражения;
    • АО – падающий луч;
    • ОВ – отраженный луч;

    Нужно четко запомнить: углы падения и отражения берутся не к поверхности отражения, а к проведенному в точку падения перпендикуляру.

    Если передвигать осветитель вокруг диска, угол падения будет меняться. Угол отражения тоже изменится и будет таким же, как угол падения. Это свойство отражения является вторым законом отражения света:

    Если падающий луч пойдет от точки В по направлению ВО, то он отразится от поверхности MN как раз по линии ОА. Это свойство называют обратимостью световых лучей, о чем говорили еще в древности, но дать научного объяснения не могли.

    Почему сломался карандаш?

    Наблюдательный рыболов видит, что весла от его лодки при погружении в воду как будто ломаются. Когда весла над поверхностью воды, они снова прямые. Почему? Это объясняют оптические законы.

    Взмахнуть рукой в воздухе гораздо легче, чем провести рукой внутри воды. Вот и свет проходит в разных средах (например, в вакууме, стекле, воздухе, алмазе, воде) тоже по-разному. На границе двух различных сред меняется направление хода лучей света.

    Углы падения и преломления, которые определяются, как и при отражении, с помощью перпендикуляра к границе раздела, в данном случае не равны.

    Вот почему карандаш выглядит в стакане сломанным. Здесь не нужно путать световые лучи и сам карандаш. Лучи идут человеку в глаз, как показано на чертеже. То, что карандаш воспринимается глазом в сломанном виде – это оптическая иллюзия, созданная ходом всех лучей, отражающихся от карандаша.

    Как проходит свет в разных средах?

    Различные среды преломляют лучи по-разному. Так, на границе между воздухом и водой угол преломления примерно 30 о , а на границе воздух – алмаз, угол преломления около 21 о . Причем, это с одним углом падения в 60 о .

    Не всегда угол преломления меньше угла падения, как в приведенных примерах. Если вспомнить, что свет – это электромагнитная волна, то значит, он обладает скоростью (300 000 км/с в вакууме). В веществах скорость света другая, всегда меньше.

    На своем пути лучи света проходят по различным прозрачным веществам, которые образуют оптическую среду. Если скорость света в одной среде больше, чем в другой, то первая среда называется оптически менее плотной, а вторая – оптически более плотной средой. Например, попадая в воду из воздуха, лучи света переходят из оптически менее плотной среды (воздух) в оптически более плотную (воду).

    Преломление лучей на границе раздела связано с оптической плотностью каждой из сред следующим правилом:

    Отсюда видно, что угол преломления может быть больше или меньше угла падения. Все объясняется оптическими свойствами среды, куда переходит световой луч.

    Источник

    Читайте также:  Жизнь под чужим солнцем драмиона фанфики
    Adblock
    detector