Меню

Солнце расположено среди звезд звездного диска

Солнце расположено среди звезд звездного диска

> Солнце — одиночная звезда, поэтому астрономы предполагали, что и сформировалось оно в одиночестве. Но большинство звезд формируются в скоплениях, и факты, полученные при изучении метеоритов и орбит комет, указывают, что наше Солнце тоже не было исключением.

> Скопление, где родилось Солнце, содержало от 1,5 тыс. до 3,5 тыс. звезд в области диаметром десять световых лет — большое, но не дружное семейство, в котором сильные обижали слабых, и которое распалось вскоре после образования Солнечной системы.

> Хотя «братья и сестры» Солнца давно уже разбрелись по Галактике, такие обсерватории, как европейский спутник GAIA, смогут заняться их поиском. Свойства этих звезд должны заполнить белые пятна древней истории Солнечной системы.

Воссоединение с нашими давно потерянными звездными родственниками должно помочь астрономам реконструировать условия, при которых бесформенное газово-пылевое облако породило Солнечную систему.
Самое неопровержимое свидетельство того, что у Солнца были родственники, нашлось в 2003 г., когда Шого Тачибана (Shogo Tachibana), ныне из Токийского университета, и Гэри Хасс (Gary R. Huss), ныне из Гавайского университета в Маноа, изучили два примитивных метеорита, которые, по-видимому, сохранились неизменными с эпохи формирования Солнечной системы. В них обнаружился никель-60, продукт радиоактивного распада железа-60, в химическом соединении, куда по правилам должно входить железо. Похоже, что в метеорите имел место химический вариант игры «заманить и подменить»: исходное соединение сформировалось с железом, затем железо превратилось в никель, который оказался там заперт, как вечный пленник.

ДОКАЗАТЕЛЬСТВА
Несколько доказательств, подтверждающих, что Солнце родилось в скоплении:

> В древних метеоритах содержатся продукты распада короткоживущих радионуклидов, таких как железо-60 и алюминий-26. Источник этих изотопов (по-видимому, сверхновая) должен был располагаться очень близко, а значит, молодое Солнце не было одиноким.
> Содержание тяжелых элементов на Солнце выше, чем можно было бы ожидать, основываясь на его положении в Галактике. Это указывает на обогащение веществом от близкой сверхновой.
> Уран и Нептун значительно меньше Юпитера и Сатурна. Одной из причин может быть излучение близкой звезды, испарившее их внешние слои. Более близкие к Солнцу планеты избежали этой участи, поскольку их защитили остатки межпланетного газа.

ДОКАЗАТЕЛЬСТВА

Железо-60 должно было успеть синтезироваться, внедриться в Солнечную систему и войти в состав метеоритов за время своего радиоактивного полураспада, которое составляет 2,6 млн лет. Для космоса это миг. Поэтому железо должно было возникнуть где-то рядом: самый вероятный его источник-взрыв сверхновой. На основе этих и других измерений изотопов Лесли Луни (Leslie Looney) из Иллинойского университета и его соавторы утвервдали в 2006 г., что сверхновая вспыхнула на расстоянии не более пяти световых лет, когда Солнцу едва исполнилось 1,8 млн лет. Эта сверхновая могла быть даже на расстоянии 0,07 световых лет.
Если Солнце было таким же уединенным, как сейчас, то оказаться рядом со сверхновой в момент ее взрыва оно могло случайно. Быть может, массивная звезда просто проходила рядом, когда решила взорваться? Но ни одна другая сверхновая никогда не взрывалась так близко от нас; если бы это случилось, то, скорее всего, уничтожило бы жизнь на Земле. Гораздо более вероятно, что новорожденное Солнце и взорвавшаяся звезда были членами одного скопления. Когда звезды упакованы так плотно, близкая вспышка сверхновой вполне возможна.

Мысль о том, что Солнце родилось в звездном скоплении, не согласуется с классическим представлением о скоплениях, как оно дается в учебниках. Традиционно астрономы делят скопления на два типа: так называемые галактические, или рассеянные скопления и шаровые скопления. Первые из них молоды, содержат не очень много звезд и располагаются вблизи плоскости Галактики. Примером служит скопление Ясли (М44), которое было одним из первых объектов, обнаруженных Галилеем в его телескоп 400 лет назад, в 1609 г. То, что выглядело как пятнышко света, оказалось группой звезд — более 350 светил, родившихся около 700 млн лет назад.
Иное дело — шаровые скопления. Они очень старые, густонаселенные и распределены по всей Галактике, а не только вблизи ее плоскости. Первое было открыто в 1746 г. итальянским астрономом Джованни Маральди (Giovanni Maraldi) и сейчас известно как М15. В нем около миллиона звезд возрастом около 12 млрд лет.
Проблема в том, что ни один из этих двух типов скоплений не годится для Солнца. Его солидный возраст 4,6 млрд лет указывает, что оно могло родиться в шаровом скоплении, но его расположение в диске Галактики говорит в пользу рассеянного скопления. Однако за последние два десятилетия мы поняли, что не все скопления в точности соответствуют одному из этих двух типов.
На наши представления о звездных скоплениях сильно повлияло скопление R136, находящееся в галактике Большое Магелланово Облако — одном из небольших спутников нашей Галактики. Впервые описанное в 1960 году, R136 сначала было принято за одиночную гигантскую звезду в 2 тыс. раз массивнее Солнца и в 100 млн раз ярче него. Но в 1985 г. Герд Вей-гельд (Gerd Weigelt) и Герхард Байер (Gerhard Baier), работавшие тогда в Университете Эрлангена и Нюрнберга, с помощью новой камеры высокого разрешения обнаружили, что на самом деле R136 — это скопление примерно 10 тыс. звезд возрастом несколько миллионов лет. Оно такое же плотное, как шаровое, но столь же молодое, как рассеянное скопление. Имея характеристики обоих типов, R136 стало связующим звеном между ними. С тех пор астрономы обнаружили и в нашей Галактике несколько скоплений, похожих на R136. А в некоторых галактиках, таких как Антенны, их сотни, если не тысячи.

Звездное скопление R136, расположенное в области под названием Туманность Тарантула, похоже на то скопление, в котором родилось Солнце, но значительно плотнее него.
ЗВЕЗДНОЕ СКОПЛЕНИЕ

Это было поразительное открытие: звезды продолжают формироваться в таких плотных скоплениях, которые можно принять за отдельную звезду! Теоретиков это привело в замешательство. С одной стороны, новые данные нас успокоили, поскольку мы не могли объяснить R136 как отдельную сверхзвезду. С другой стороны, мы вынуждены были пересмотреть все, что, как нам казалось, мы знаем о звездных скоплениях. Теперь мы считаем, что все звезды, включая Солнце, родились в плотных скоплениях, таких как R136. Скопление формируется из отдельного межзвездного газового облака и со временем эволюционирует в рассеянное или шаровое скопление в зависимости от своей массы и окружающих условий.

Члены скопления имеют разнообразные массы — у немногих звезд масса велика, у большинства она существенно меньше. Самые распространенные звезды раз в десять легче Солнца. С увеличением массы в десять раз количество звезд уменьшается раз в 20.
На каждую звезду с массой от 15 до 25 солнечных масс — именно такая взорвалась как сверхновая рядом с новорожденным Солнцем — в скоплении содержится около 1,5 тыс. менее массивных звезд. Это дает нам минимальную оценку массы того скопления, в котором родилось Солнце. А максимальная оценка следует из того факта, что чем крупнее скопление, тем больше времени требуется массивным звездам, чтобы опуститься к центру, где они имеют большую вероятность влиять на своих менее массивных собратьев. Расчеты показывают, что это скопление, вероятно, содержало не более 3,5 тыс. звезд. Звезда с массой в 15-25 солнечных масс живет 6-12 млн лет до момента взрыва. Значит, она должна настолько же раньше сформироваться, чем Солнце. Изучая некоторые скопления, например знаменитое скопление Трапеция в Туманности Ориона, астрономы обнаружили, что массивные звезды обычно формируются первыми, а звезды типа Солнца зарождаются на несколько миллионов лет позже.

На основе наблюдений звездных скоплений и выведенных свойств того скопления, в котором родилось Солнце, Джеф Хестер (J. Jeff Hester) и Стивен Деш (Steven J, Desch) из Аризонского университета с коллегами реконструировали события, предшествовавшие формированию Солнца.

1. Гигантское облако молекулярного газа собралось и начало сжиматься под собственным весом
2. Одна или несколько массивных звезд сформировались в наиболее плотных областях этого облака
3. Каждая массивная звезда испускает ультрафиолетовое излучение, ионизуя окружающий газ и возбуждая ударную волну, которая расширяется со скоростью несколько километров в секунду.
4. Спустя несколько миллионов лет фронт ударной волны достиг ближайших газовых уплотнений и сжал их. Они сколлапсирооали и образовали звезды, в том числе и наше Солнце.
5. Примерно через 100 тыс. лет ионизационный фронт достиг новорожденного Солнца и начал «выпаривать» окружавший Солнце газ. Возможно, между Солнцем и молекулярным облаком протянулся газовый «палец»

РОЖДЕНИЕ СОЛНЕЧНОГО СКОПЛЕНИЯ

Скопление такой массы, как мы оценили, слишком мало, чтобы стать шаровым скоплением. Оно рассеялось примерно за 100-200 млн лет. Массивные звезды в его центре выбрасывали газ в виде звездного ветра (похожего на солнечный ветер, но гораздо более сильного), а в конце жизни взорвались, уменьшив этим плотность вещества в скоплении и тем самым ослабив его гравитационное поле. В результате скопление расширилось и могло развалиться. Но даже если оно пережило эту раннюю дегазацию, влияние на движение его звезд со стороны гравитационного приливного поля Галактики вызвало его медленный распад.

Скопление, в котором родилось Солнце, в конце концов распалось, но до этого оно помогло оформиться Солнечной системе. Излучение окружающих звезд сработало как кухонный нож, обрезав края протопланетного диска; Слизкая сверхновая «приперчила» растущие планеты радиоактивными изотопами, а притяжение пролетающих звезд «взболтало» орбиты комет.

1. За 10 тыс. лет окружающий газ окончательно рассеялся. Ультрафиолетовое излучение стало непосредственно падать на протопланетиый диск, окружавший Солнца.
2. За следующие примерно 10 тыс. лет это излучение разрушило диск за пределом 50 астрономических единиц от его центра.
3. Примерно через 2 млн лет взорвалась массивная звезда, и в Солнечную систему попало ее вещество, в том числе свежие радиоактивные изотопы. Они вошли в состав допланетных тел и стали источником энергии для ранней геологической активности.
4. В течение следующих примерно 100 млн лет другая звезда этого скопления прошла на расстоянии нескольких тысяч астрономических единиц от Солнца, перемешав кометы на периферии Солнечной системы и переведя их на наклонные орбиты.
5. Из-за саморазрушения наиболее массивных звезд гравитация в скоплении ослабла и оно рассеялось примерно за 100-200 млн лет. Солнце и другие члены скопления медленноудалились друг от друга.

СМЕРТЬ СОЛНЕЧНОГО СКОПЛЕНИЯ

До того как скопление разрушилось, его звезды были упакованы так плотно, что одна из них легко могла пролететь через Солнечную систему. Тесное сближение звезд должно было сместить планеты, кометы и астероиды с их исходных круговых орбит, лежавших в одной плоскости, и перевести на высокоэллиптические, разнообразно наклоненные орбиты. Многие кометы за орбитой Плутона, на расстояниях более 50 астрономических единиц (а.е.) от Солнца, имеют сильно вытянутые орбиты. Столь необычные орбиты, по-видимому, невозможно объяснить внутренней динамикой Солнечной системы, поскольку эти тела находятся даже вне зоны гравитационного влияния Юпитера. Скорее всего, их «перемешала» звезда, прошедшая на расстоянии 1000 а.е. Но большие планеты движутся по регулярным орбитам, доказывая этим, что чужая звезда никогда не приближалась к Солнцу менее чем на 100 а.е.
Исходя из этого, я оценил размер скопления. Чтобы с высокой вероятностью за время жизни скопления звезда прошла на расстоянии 1000 а.е. от Солнца, диаметр скопления должен быть не более десяти световых лет. С другой стороны, чтобы звезда не прошла ближе 100 а.е., скопление должно быть более трех световых лет в диаметре. Короче, скопление, в котором родилось Солнце, было похожим на R136, но значительно менее плотным, так что звезды в нем были достаточно удалены друг от друга и не мешали формированию планет.

Теоретики могут пойти еще дальше и спросить — а где именно в Галактике сформировалось наше родительское скопление? Солнечная система обращается вокруг центра Галактики по почти круговой орбите, не удаляясь заметно от диска. В настоящее время мы находимся на расстоянии около 30 тыс. световых лет от центра и в 15 световых годах от плоскости диска, двигаясь по орбите со скоростью 234 км в секунду. С момента своего рождения Солнце совершило 27 галактических оборотов. Орбита у него не замкнутая; ее более сложная форма определяется гравитационным полем Галактики, параметры которого астрономы определяют по движению звезд и межзвездных облаков газа.
Предположив, что это гравитационное поле не изменилось за последние 4,6 млрд лет, я рассчитал орбиту обратно во времени и выяснил, что Солнце родилось на расстоянии 33 тыс. световых лет от центра и 200 световых лет от галактической плоскости. Загадочным это положение делает тот факт, что внешние области Галактики беднее тяжелыми элементами, чем внутренние. В самых далеких областях может быть недостаточно вещества для формирования планет, не говоря уже о жизни. Хотя предполагаемое место рождения Солнца не настолько бедное, там все еще меньше тяжелых элементов, чем на Солнце. Исходя только из содержания тяжелых элементов, астрономы могли бы предположить, что Солнце родилось на 9 тыс. световых лет ближе к центру.

Источник

Строение спиральной галактики

Основные структурные элементы типичной спиральной галактики, на примере Млечного пути: гало, ядро, балдж, звездный диск.

Как устроена галактика: ядро, балдж, гало, звездный диск.

Спиральный галактики (к которым относится и наша галактика Млечный путь) имеют схожее внутреннее строение.

Типичная спиральная галактика состоит из трех основных частей:

  • звездного диска
  • звездного гало
  • галактического ядра

Ядро расположено в центре галактики, область вокруг ядра называется гало, а само гало уже окружено массой звезд называемых звездным диском.

Основные элементы и области из которых состоит спиральная галактика «Млечный путь». Вид боку и сверху

Галактическое ядро

Галактическое ядро представляет собой очень малую по сравнению с размерами всей галактики область, однако именно здесь располагается центр притяжения всей галактики – обычно сверхмассивная черная дыра, обладающая невероятно большой массой (для Млечного пути расчетный “вес” такой черной дыры составил вес около трех миллионов масс Солнца!).

Галактическое гало

Галактическое гало – гигантское сферообразное “звездное облако” или “звездная сфера” сконцентрированное вокруг галактического ядра. Фактически границы нашей Галактики определяются именно размерами гало. Ра­диус гало значительно больше разме­ров звездного диска галактики и по некоторым данным достигает нескольких сот тысяч све­товых лет.

Состоит гало в основном из очень старых, неярких мало массивных звёзд. Они встречаются как поодиночке, так и в виде шаровых скоплений, которые могут включать в себя более миллиона звёзд. Возраст населения сферической составляющей Галакти­ки превышает 12 млрд. лет. Его обыч­но принимают за возраст самой Га­лактики.

Характерной особенностью звёзд гало является чрезвычайно малая до­ля в них тяжёлых химических эле­ментов. Звёзды, образующие шаровые скопления, содержат металлов в сот­ни раз меньше, чем Солнце.

Звёзды сферической составляю­щей концентрируются к центру Га­лактики. Центральная, наиболее плот­ная часть гало в пределах нескольких тысяч световых лет от центра Галак­тики называется балдж (в переводе с английского “утолщение”).

Звёзды и звёздные скопления гало движутся вокруг центра Галактики по очень вытянутым орбитам. Из-за того, что вращение отдельных звёзд происходит почти беспорядочно (т. е. скорости соседних звёзд могут иметь самые различные направления), гало в целом вращается очень медленно.

Балдж

Внутренняя, ближняя к ядру и самая плотная часть гало называется балдж (англ. bulge – “вздутие”). Если бы мы жили на планете около звезды, находящейся внутри балджа Галактики, то на небе были бы видны не привычные взгляду “звездные точки”, а сразу несколько десятков звезд, по яркости сопоставимых с нашей Луной.

Однако Солнце расположено достаточно далеко от ядра Галактики – на расстоянии около 26 000 световых лет. Поэтому, если в окрестностях Солнца, в диске, одна звезда приходится на 8 кубических парсеков, то в центре Галактики в одном кубическом парсеке находится 10 000 звезд. Центр Галактики находится в направлении созвездия Стрельца.

Звездный диск

Звездный диск (на самом деле правильнее говорить про звездный диск и газопылевой диск, но мы упростим) – самая крупная и массивная область галактики простирающаяся на сотни и тысячи световых лет от центра. Приблизительная масса звездного диска Млечного пути равна 150 млрд. масс Солнца. В отличие от центральной части галактики, имеющей сферическую форму, звездный диск больше напоминает две тарелки сложенные вместе – то есть почти плоский в поперечнике и все более истончающийся от центра к краю.

“Население” звездного диска очень сильно отличается от населения гало. Вблизи плоскости диска концентрируются молодые звёзды и звёздные скопления, возраст которых не превышает нескольких миллиардов лет. Они образуют так называемую плоскую составляющую. Среди них очень много ярких и горячих звёзд.

Газ в диске Галактики также сосре­доточен в основном вблизи его пло­скости. Он распределён неравномер­но, образуя многочисленные газовые облака — от гигантских неоднород­ных по структуре сверх облаков про­тяжённостью несколько тысяч свето­вых лет до маленьких облачков размерами не больше парсека.

Основным химическим элементом в нашей Галактике является водо­род. Приблизительно на 1/4 она со­стоит из гелия. По сравнению с этими двумя элементами остальные присутствуют в очень небольших количе­ствах. В среднем химический состав звёзд и газа в диске почти такой же, как у Солнца.

Спиральные рукава

Одним из наиболее заметных образований в звездных дисках галактик, подобных нашей, являются спиральные ветви (или рукава). Они и дали название этому типу объектов – спиральные галактики. Спиральная структура в нашей Галактике очень хорошо развита. Вдоль рукавов в основном сосредоточены самые молодые звёзды, многие рассеянные звёздные скопления и ассоциации, а также цепочки плотных облаков меж звёздного газа, в которых продолжают образовываться звёзды.

В спиральных ветвях находится большое количество переменных и вспыхивающих звёзд, в них чаще всего наблюдаются взрывы некоторых типов сверхновых. В отличие от гало, где какие-либо проявления звёздной активности чрезвычайно редки, в ветвях продолжается бурная жизнь, связанная с непрерывным переходом вещества из межзвёздного пространства в звёзды и обратно. Галактическое магнитное поле, пронизывающее весь газовый диск, также сосредоточено главным образом в спиралях.

Спиральные рукава Млечного Пути в значительной степени скрыты от нас поглощающей материей. Подробное их исследование началось после появления радиотелескопов. Они позволили изучать структуру Галактики по наблюдениям радиоизлучения атомов межзвёздного водорода, концентрирующегося вдоль Длинных спиралей.

По современным представлениям, спиральные Рукава связаны с волнами сжатия, распространяющимися по диску галактики. Проходя через области сжатия, вещество диска уплотняется, а образование звёзд из газа становится более интенсивным. Причины возникновения в дисках спиральных галактик такой своеобразной волновой структуры не вполне ясны. Над этой проблемой работают многие астрофизики.

Как выглядела бы наша галактика «Млечный путь» при наблюдении откуда-нибудь «снаружи». Красным кружком обозначено примерное местоположение Солнечной системы

Полные размеры нашей Галактики составляют: 30 килопарсек (100 000 световых лет) в диаметре, и 1000 световых лет в толщину. Иными словами, при взгляде “сбоку”, галактика имеет форму линзы.

Её галактический диск вращается вокруг оси по часовой стрелке, если смотреть на Галактику сверху со стороны ее “северного полюса”, находящегося в созвездии Волосы Вероники.

Галактика имеет хорошо выраженную спиральную структуру. Спирали представляют собой волны плотности, распространяющиеся в сторону вращения диска Галактики с постоянной угловой скоростью.

Образование в галактике звезд I и II поколения

Галактика Млечный путь (впрочем и другие спиральные галактики) образовалась из медленно вращавшегося газового облака, по своим размерам превосходившего ее в десятки раз.

Первоначально это газовое облако состояло из смеси 75% водорода и 25% гелия и почти не содержало тяжелых элементов. В течение примерно миллиарда лет это облако свободно сжималось под действием сил гравитации. Этот коллапс неизбежно привел к фрагментации и началу процесса звездообразования.

Сначала газа было много, и он находился на больших расстояниях от плоскости вращения. Возникли звезды первого поколения, в том числе и весьма массивные, а также шаровые скопления. Их современное пространственное распределение соответствует первоначальному распределению газа, близкому к сферическому.

Наиболее массивные звезды первого поколения быстро проэволюционировали и обогатили межзвездную среду тяжелыми элементами, главным образом за счет вспышек сверхновых. Та часть газа, которая не превратилась в звезды, продолжала свой процесс сжатия к центру Галактики. Из-за сохранения момента количества движения, ее вращение становилось быстрее, образовался диск, и, в нем снова начался процесс звездообразования.

Это второе поколение звезд оказалось богатым тяжелыми элементами. Оставшийся газ сжался в более тонкий слой, так возникла плоская составляющая – основная арена современного звездообразования. Разумеется, выделения двух или трех поколений звезд весьма условно: скорее всего, звездообразование было единым непрерывным процессом, хотя в нем и возможны были отдельные этапы замедления.

Тем не менее, общее правило верно: к галактическому диску относятся звезды ранних спектральных классов О и В, т.е. молодые звезды. Гало, наоборот, составляют объекты, возникшие на ранних стадиях эволюции Галактики, старые звезды. Их возраст составляет порядка 10 – 12 миллиардов лет.

Почему с Земли не видно ярко сияющий центр нашей галактики?

Почти все молекулярное вещество межзвездной среды (облака пыли и газа) находится на расстоянии до 3-7 килопарсек от центра, поэтому и видимое излучение центральных областей Галактики полностью скрыто от нас мощными слоями поглощающей материи (к счастью мы можем наблюдать эти области в инфракрасном диапазоне).

Эволюция спиральных галактик: от Большого взрыва до наших дней

Место Солнечной системы в галактике Млечный путь

Наше Солнце в галактике Млечный путь расположено между спиральными рукавами Стрельца и Персея. Солнце (а вместе с ним и вся солнечная система) движется со скоростью около 220 км/с, и делает полный оборот вокруг центра Галактики за 200 миллионов лет. Всего за время своего существования (4,5 млрд.лет) Солнце облетело Галактику примерно 30 раз.

Скорость вращения Солнца вокруг центра Галактики практически совпадает с той скоростью, с которой в данном районе движутся спиральные рукава галактики. Такая зона внутри галактики, где скорости звезд и спиральных рукавов совпадают, называется коротационной окружностью и является расчетной “зоной жизни”, т.е. если и есть внутри галактики благоприятные “тихие гавани”, где может развиться жизнь, то это именно коротационная окружность.

Как вы догадались, наше Солнце находится в её пределах.

Источник

Читайте также:  Юбка солнце крючком для девочки схема
Adblock
detector