Меню

Состояние вселенной до большого взрыва называется 13 букв

Что было до Большого Взрыва?

Примерно 13.8 миллиардов лет назад произошел Большой Взрыв — очень быстрое расширение вселенной из плотного, горячего, экстремально сжатого состояния.

Наши модели показывают, что в момент большого взрыва Вселенная была настолько сильно сжата, что гравитация и плотность материи в ней стремились к бесконечности.

Затем по каким-то причинам вселенная начала очень быстро расширяться, а плотность материи и температура — падать. Со временем образовались атомы, первые звезды и галактики, и наконец на одной заурядной планете, на окраине ничем не примечательно галактики появились мы с вами.

Благодаря физике мы вполне неплохо представляем себе, что происходило после Большого Взрыва. Но что происходило до него? Что в конце концов послужило его причиной? Имеет ли вообще смысл рассуждать о том, что было до того момента, когда возникло само время?

Если быть совершенно честным, то наука на текущем этапе не может ответить на эти вопросы. Но мы можем делать различные предположения.

По мнению одного из самых известных астрофизиков 20-го и 21-го веков Стивена Хокинга до большого взрыва просто ничего не было. Теория Хокинга (вообще-то не только его) состоит в том, что вселенная безгранична и ни время, ни пространство попросту не существовали до Большого Взрыва.

Чтобы лучше понять гипотезу Хокинга представим себе, что мы движемся назад во времени. По мере движения назад вселенная будет сжиматься (так же как при движении вперед она расширяется). Если мы «отмотаем» время на 13.8 миллиардов лет назад, то вселенная, которую мы увидим будет в состоянии сжатом до размеров одного атома. Это состояние называется сингулярностью.

Внутри сингулярности законы физики в том виде, в каком они известны нам просто перестают работать. Точно также сами понятия пространства и времени в сингулярности не имеют смысла. Можно сказать, что до того, как вселенная начала расширяться не было ни пространства, ни времени. При этом «отматывая» время назад мы будем ассимптоматически приближаться к начальной точке, но никогда её не достигнем.

Гипотеза Хокинга — одна из многих. Существует множество гипотез объясняющих что было до большого взрыва. Интерес представляет также так называемая «зеркальная гипотеза», которая гласит, что до большого взрыва существовала вселенная полностью зеркальная нашей. Время в ней текло в обратном направлении, вместо материи была антиматерия и все процессы протекали наоборот и т.д.

Т.е. например если в нашей вселенной курица снесла яйцо, затем это яйцо разбили и приготовили из него яичницу, то в предыдущей вселенной все было наоборот — яичница стало жидкой, затем «собралась» в целое яйцо, которое «запрыгнуло» обратно в курицу.

Согласно этой гипотезе та предыдущая вселенная сжималась, пока не достигла сингулярности, а после достижения сингулярности произошел Большой Взрыв, который дал начало нашей вселенной.

Вряд ли в обозримом будущем мы узнаем был ли прав Стивен Хокинг или авторы «зеркальной гипотезы», или может быть авторы одной из множества других гипотез.

Сингулярность представляет собой фундаментальную преграду, отделяющую нас от того, что было до нее. Наше понимание законов природы пока не достаточно, чтобы понять, что происходит внутри сингулярности.

Впрочем научный прогресс не стоит на месте и уверен, однажды мы сможем приоткрыть завесу и над этой тайной мироздания.

Ставьте палец вверх чтобы видеть в своей ленте больше статей о космосе и науке!

Подписывайтесь на мой канал здесь, а также на мой канал в телеграме . Там вы можете почитать большое количество интересных материалов, а также задать свой вопрос.

Источник

Что было до Большого взрыва?

Достаточно трудно представить себе время, примерно 13,7 миллиардов лет назад, когда вся Вселенная существовала в сингулярности. Теория Большого взрыва объясняет возникновение Вселенной, и вся материя в космосе, само пространство — существовали в форме, более мелкой, чем элементарные частицы. Еще более сложный вопрос: что существовало до большого взрыва? Сам вопрос предшествует современной космологии, по крайней мере, на 1600 лет. В IV веке богослов Святой Августин разбирался с природой бога до сотворения Вселенной. Его ответ? Время было частью Божьего творения, и в нем просто не было времени до сотворения.

Лучший физик XX века, Альберт Эйнштейн пришел к очень похожим выводам при построении теории относительности. Давайте рассмотрим влияние массы на время. Планеты огромной массы искривляют пространство-время меньше для человека на земной поверхности, чем для спутника на орбите. Разница слишком мала, чтобы ее заметить, но время течет более медленно для кого-то, стоящего рядом с массивным объектом. Перед большим взрывом сингулярность владела всей массой во Вселенной, эффективно сворачивая время в тупик. Следуя этой логике, название этой статьи является в корне ошибочным. Согласно теории относительности Эйнштейна, время пришло только после расширения первозданной сингулярности в сторону своего текущего размера и формы. Дело закрыто? Далеко нет. Через десятилетия после смерти Эйнштейна, активно развивается квантовая физика, и множество новых теорий воскрешает вопрос о состоянии до большого взрыва.

Вот мысль: что, если наша Вселенная является порождением другой, более старшей Вселенной? Некоторые астрофизики полагают, что эта история написана в реликтовом излучении, оставшимся от большого взрыва. Астрономы впервые наблюдали реликтовое излучение в 1965 году, и оно быстро создало проблемы для теории большого взрыва — проблемы, которые были впоследствии устранены в 1981 году с инфляционной теорией. Эта теория предполагает очень быстрое расширение Вселенной в первые мгновения своего существования. При этом учитываются температура и колебания плотности в реликтовом излучении, но подсказывает, что эти колебания должны быть едиными.

Источник

ТЕОРИЯ БОЛЬШОГО ВЗРЫВА: ИСТОРИЯ ЭВОЛЮЦИИ НАШЕЙ ВСЕЛЕННОЙ

Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.

Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.

Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.

Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.

Читайте также:  Как возникла вселенная веды

Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.

Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10-43 до 10-11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.

Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.

Планковская эра предположительно длилась от 0 до 10-43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.

Приблизительно в период с 10-43 до 10-36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.

В период примерно с 10-36 до 10-32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).

С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10-32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.

Это началось на 10-37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.

В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.

Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.

Например, ученые считают, что на 10-11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10-6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.

Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.

В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.

Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.

С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10-14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.

В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.

Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.

Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.

Читайте также:  Академия клинка манга альтернативная вселенная

Долгосрочные прогнозы относительно будущего Вселенной

Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?

Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.

Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10-26 кг материи на м³), Вселенная начнет сжиматься.

Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.

Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.

Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.

Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.

История теории Большого взрыва

Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.

В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.

В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.

В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).

Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.

Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.

После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.

В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.

Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.

В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.

Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.

Читайте также:  Человек паук сквозь вселенные граффити

Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.

Найдены дубликаты

жалко,что это всего лишь теория.Вот бы наверняка знать как и что.

Да как вы задрали со своим «всего лишь теория».

Научная теория — наиболее развитая форма организации научного знания, дающая целостное представление о закономерностях и существенных связях изучаемой области действительности.

если бы не подвергали сомнению всё незыблимое , то у нас до сих пор наука была на уровне инквизиции.

Ольга Сильченко — Эволюция дисковых галактик

Как изучается эволюция дисковых галактик? Чем отличаются молодые и старые галактики? Как со временем меняются темпы звёздообразования в галактиках? От чего зависят наблюдаемые различия в структуре дисковых галактик и какими они бывают?

Рассказывает Ольга Сильченко, доктор физико-математических наук, заместитель директора по научной работе Государственного астрономического института имени П. К. Штернберга

Астрономы обнаружили невидимую межгалактическую дорогу

Международная группа астрономов впервые получила изображение скопления галактик с черной дырой в центре, которые движутся на высокой скорости, образуя межгалактический поток материи.

Как сообщает Phys.org , полученные данные подтверждают ранее выдвинутые теории происхождения и эволюции Вселенной. В частности, ранее астрономы предположили, что почти с самого рождения Вселенной существует так называемая космическая паутина.

Ученые теоретически доказали, что галактики связаны невидимыми человеческому глазу нитями. Это своего рода дороги, состоящие из очень тонкого слоя газа и соединяющие скопления галактик по всей Вселенной. Считается, что материя на этих дорогах настолько разрежена, что ускользает даже от самых чувствительных камер и телескопов.

В 2020 году была зафиксирована первая из таких дорог — межгалактическая газовый поток длиной 50 миллионов световых лет. Но только сейчас ученые получили четкое изображение с беспрецедентным уровнем детализации Северного скопления галактик, обнаруженного на этой газовой нити.

Чтобы его получить, астрономы объединили изображения, полученные из различных источников, в том при помощи радиотелескопа CSIRO ASKAP и спутников eROSITA, XMM-Newton и Chandra. Это помогло детализировать снимки и впервые разглядеть крупную галактику, в центре которой находится черная дыра.

По словам ведущего автора исследования Энджи Вероники из Института астрономии Аргеландера при Боннском университете, вещество за галактикой струится и напоминает «косы бегущей девушки».

«Превосходная чувствительность телескопа ASKAP к слабому расширенному радиоизлучению стала ключом к обнаружению этих струй радиоизлучения сверхмассивной черной дыры, — говорит руководитель исследовательского проекта EMU, профессор Эндрю Хопкинс из австралийского Университета Маккуори. — Форма и ориентация этих струй, в свою очередь, дают важные ключи к разгадке движения галактики, в которой находится черная дыра».

Проанализировав полученное изображение, ученые пришли к выводу, что Северное скопление теряет материю по мере своего перемещения. В целом наблюдения подтверждают теоретическое представление о том, что газовая нить — это межгалактический поток материи. Северное скопление движется по этой дороге на высокой скорости к двум другим, гораздо более крупным скоплениям галактик, названным Abell 3391 и Abell 3395.

Китай планирует построить на орбите Земли космическую солнечную электростанцию

Китай хочет стать первой страной, которая развернёт на околоземной орбите солнечную электростанцию. Объект планируется использовать для сбора, а также передачи собранной энергии на Землю. Конструкцию планируется разместить на геостационарной орбите, на высоте 35 786 километров, где она сможет постоянно находиться над выбранной точкой Земли, рассказал Лун Лэхао (Long Lehao), главный конструктор китайских ракет серии «Чанчжэн-9» на презентации, прошедшей в Гонконге, передаёт SpaceNews.

Проект предусматривает строительство на орбите больших солнечных панелей. Преимуществом электростанции станет возможность почти постоянного получения солнечной энергии, независимо от погодных условий. Передавать энергию на Землю планируется с помощью лазеров или микроволн.

По словам Луна, проект должен начаться с небольшого эксперимента по передаче энергии в 2022 году. К 2030 году на орбиту планируется вывести полноценную электростанцию мегаваттного класса. Коммерческую станцию гигаваттного класса китайские учёные хотят разместить на орбите к 2050 году. Согласно расчётам, для этого потребуется более ста запусков сверхтяжёлой ракеты «Чанчжэн-9», в ходе которых на орбиту будет доставлено около 10 тыс. тонн конструкций для сборки сооружения. Суммарная площадь солнечной электростанции, согласно ожиданиям, составит один квадратный километр.

Проект орбитальной электростанции упоминался в числе китайских космических планов ещё в 2008 году. В 2019 году Китайская академия космических технологий в городе Чунцин приступила к строительству экспериментальной базы для испытания способов беспроводной передачи энергии.

Осуществлять доставку на орбиту элементов будущей солнечной электростанции планируется с помощью модернизированной сверхтяжёлой ракеты «Чанчжэн-9». Минувшей весной проект ракеты-носителя получил одобрение правительства Китая после нескольких лет разработки. Усовершенствованная версия ракеты сможет выводить на околоземную орбиту до 150 тонн полезной нагрузки, а на отлётную к Луне траекторию — от 50 до 53 тонн.

Того и гляди, доживем до сферы Дайсона

Космический телескоп James Webb будет наблюдать самые далекие квазары Вселенной

Квазары представляют собой яркие, далекие и активные сверхмассивные черные дыры, массы которых достигают миллионов и миллиардов масс Солнца. Расположенные обычно в центрах галактик, эти объекты питаются падающей на них материей и разражаются мощными вспышками излучения. Квазары являются одними из самых ярких объектов Вселенной и превосходят по светимости все звезды родительской галактики вместе взятые, а джеты и ветра квазаров принимают активное участие в формировании родительской галактики.

Вскоре после запуска космического телескопа James Webb («Джеймс Уэбб») команда ученых направит объектив телескопа на шесть самых далеких и ярких квазаров Вселенной.

Исследователи будут изучать свойства данных квазаров, а также их связь с ранними этапами эволюции галактик в ранней Вселенной. Кроме того, команда планирует использовать эти квазары для изучения газа, наполняющего пространство между галактиками, в частности, в период реионизации космоса, который закончился тогда, когда Вселенная еще была очень молода. Эти задачи планируется решить, используя экстремальную чувствительность телескопа James Webb и его сверхвысокое угловое разрешение.

«Все эти квазары, которые мы изучаем, существовали очень давно, в то время, когда возраст Вселенной составлял менее 800 миллионов лет, или менее 6 процентов от ее текущего возраста. Поэтому эти наблюдения дали нам возможность изучить эволюцию галактик и формирование сверхмассивных черных дыр в эту очень раннюю эпоху существования нашего мира», — объяснил член исследовательской группы Сантьяго Аррибас (Santiago Arribas), профессор кафедры астрофизики Центра астробиологии в Мадриде, Испания. Аррибас также входит в состав научной команды бортового инструмента Near-Infrared Spectrograph (NIRSpec) обсерватории James Webb.

Обсерватория James Webb способна работать с очень низкими уровнями яркости. Это имеет большое значение, поскольку, даже несмотря на то, что изучаемые квазары являются очень яркими сами по себе, они, тем не менее, находятся на огромном расстоянии от нас, поэтому сигнал, принимаемый обсерваторией, будет очень слабым. Только невероятная чувствительность космического телескопа James Webb позволит провести эти наблюдения, пояснили члены команды.

Источник

Adblock
detector