Какой была наша Вселенная до Большого взрыва?
Физикам-теоретикам и космологам приходится искать ответы на самые фундаментальные вопросы: «Почему мы здесь?», «Когда появилась Вселенная?» и «Как это произошло?» Однако несмотря на очевидную важность поиска ответов на эти вопросы, есть вопрос, который затмевает их всех своим интересом: «Что было до Большого взрыва?».
Вселенная слишком мало изучена.
Какой была Вселенная
Скажем откровенно: мы не можем ответить на этот вопрос. Никто не может. Но ведь никто не запрещает порассуждать на эту тему и рассмотреть несколько интересных предположений? С этим согласен, например, Шон Кэрролл из Калифорнийского технологического института. В прошлом месяце Кэрролл принимал участие на проходящей два раза в год встрече Американского астрономического сообщества, где он предложил несколько «предвзрывных» сценариев, чьим «финальным аккордом» могло бы стать появление нашей Вселенной. Опять же, это всего лишь рассуждения, а не теории, поэтому просим это учитывать.
«В то время, если можно так выразиться, еще не действовало тех законов физики, которые нам известны, потому что «тогда» их еще не существовало», — говорит Кэрролл.
«Когда физики говорят, что понятия не имеют, что тогда происходило, они говорят это на полном серьезе. Этот отрезок истории находится в абсолютно непроглядной тьме», — соглашается Питер Войт, физик-теоретик Колумбийского университета.
Одним из самых странных свойств нашей Вселенной является то, что она обладает очень низким уровнем энтропии. У этого термина имеется множество интерпретаций, но в данном случае речь идет о степени неупорядоченности. И в случае со Вселенной порядка в ней больше, чем беспорядка. Представьте себе бомбу, заполненную песком. Бомба взрывается, и содержащиеся в ней миллиарды миллиардов песчинок разлетаются в разные стороны – перед вами по сути макет Большого взрыва.
«Только вместо ожидаемого хаотичного разлета эти песчинки, представляющие материю нашей Вселенной, немедленно превращаются во множество готовых «песчаных замков», образовавшихся непонятно каким образом и без посторонней помощи», — говорит Стефан Кантримен, аспирант Колумбийского университета.
Результатом Большого взрыва могло (и, возможно, должно было) стать появление высокого уровня энтропии массы в виде неравномерно распределенной материи. Однако вместо этого мы видим звездные системы, галактики и целые галактические скопления, объединенные между собой. Мы видим порядок.
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Что происходит с энтропией
Помимо этого, важно понимать, что энтропия, или неупорядоченность, со временем могут лишь увеличиваться – тот же песчаный замок рано или поздно и без посторонней помощи снова распадется на множество песчинок. Более того, как указывает Кэрролл, наше наблюдение за временем напрямую взаимосвязано с уровнем энтропии с самого появления Вселенной. При этом саму энтропию можно рассматривать как некое времязависимое физическое свойство, обладающее только одним направлением хода – в будущее.
Итак, энтропия, согласно законам физики, может только возрастать, однако нынешний ее уровень во Вселенной очень низок. По мнению Кэрролла, это может означать лишь одно: ранняя Вселенная обладала еще меньшим ее уровнем, то есть Вселенная должна была быть еще более организованной и упорядоченной. А это, в свою очередь, может наталкивать на мысль о том, что же было с нашей Вселенной собственно до самого Большого взрыва.
«Есть множество людей, считающих, что ранняя Вселенная была очень простой, неинтересной и невыразительной системой. Однако как только вы подключаете к этому вопросу энтропию, то перспектива тут же меняется, и вы понимаете, что в таком случае появляются вещи, которые необходимо объяснить», — продолжает Кэрролл.
Если даже отбросить в сторону энтропию, то перед нами останутся и другие не менее важные аспекты, которые необходимо каким-то образом подстроить под нашу нынешнюю Вселенную, в которой мы живем. Более того, в некоторых случаях низкий уровень энтропии кажется менее значимым, чем в других. Поэтому попытаемся рассмотреть три наиболее популярных предположения о том, что могло происходить со Вселенной до Большого взрыва.
Модель «Большого отскока»
Вот так все было. Или не было.
Согласно одной из гипотез, низкий уровень энтропии нашей Вселенной связан с тем, что ее появление само по себе стало результатом распада некоей «предыдущей» Вселенной. В этой гипотезе говорится, что наша Вселенная могла образоваться в результате стремительного сжатия («отскока»), управляемого сложными эффектами квантовой гравитации (сингулярностью), в свою очередь, породившими Большой взрыв. В свою очередь, это может говорить о том, что мы с одинаковым успехом можем жить как в любой точке бесконечной последовательности возникающих Вселенных, так и, наоборот, в «первой итерации» Вселенной.
Данную гипотетическую модель появления Вселенной еще иногда называют моделью «Большого отскока». Первое упоминание этого термина звучит еще в 60-х, однако в более-менее сформированную гипотезу эта модель превратилась лишь 80-х – начале 90-х годов.
Может ли Большой Разрыв привести к новому Большому Взрыву?
Среди менее значимых спорных моментов, у модели «Большого отскока» есть и явные недостатки. Например, идея коллапса в сингулярность противоречит общей теории относительности Эйнштейна – правилам, согласно которым работает гравитация. Физики считают, что эффект сингулярности может существовать внутри черных дыр, однако известные нам физические законы не могут предоставить нам механизм, позволяющий объяснить, почему «другая Вселенная», достигнув сингулярности, должна породить Большой взрыв.
«В общей теории относительности нет ничего, что указывало бы на «отскок» новой Вселенной в результате сингулярности», — говорит Шон Кэрролл.
Однако это не единственный большой спорный момент. Дело в том, что модель «Большого отскока» подразумевает наличие прямолинейного хода времени со снижающейся энтропией, однако, как говорилось выше, энтропия со временем только увеличивается. Другими словами, согласно известным нам законам физики, появление отскакивающей Вселенной невозможно.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Дальнейшее развитие модели привело к появлению гипотезы о том, что время во Вселенной может являться циклическим. Но при этом модель до сих пор не в состоянии объяснить, каким образом идущее в настоящее время расширение Вселенной сменится её сжатием. И все же это необязательно означает, что модель «Большого отскока» совершенно ошибочна. Вполне возможно, что наши нынешние теории о ней просто несовершенны и не до конца продуманы. В конце концов, физические законы, которые мы сейчас имеем, были выведены с учетом лимита, согласно которому мы способны наблюдать за Вселенной.
Модель «Спящей» Вселенной
«Возможно, до Большого взрыва Вселенная представляла собой некое очень компактное, медленно эволюционирующее статичное пространство», — теоретизируют такие физики, как Курт Хинтербихлер, Остин Джойс и Джастин Хури.
Эта «предвзрывная» Вселенная должна была обладать метастабильным состоянием, то есть быть стабильной до того момента, пока не появится еще более стабильное состояние. По аналогии представьте обрыв, на краю которого в состоянии вибрации находится валун. Любое касание до валуна приведет к тому, что он сорвется в пропасть или — что ближе к нашему случаю – произойдет Большой взрыв. Согласно некоторым теориям «предвзрывная» Вселенная могла существовать в ином виде, например, в форме сплюснутого и очень плотного пространства. В итоге этот метастабильный период подошел к концу: она резко расширилась и приобрела форму и состояние того, что мы видим сейчас.
«В модели «спящей» Вселенной, однако, тоже имеются свои проблемы», — говорит Кэрролл.
«Она тоже предполагает наличие у нашей Вселенной появления низкого уровня энтропии и при этом не объясняет, почему это так».
Однако Хинтербихлер, физик-теоретик из Университета Кейс Вестерн Резерв, не считает появление низкого уровня энтропии проблемой.
«Мы просто ищем объяснение динамики, происходившей до Большого взрыва, которая объясняет, почему мы видим то, что мы видим сейчас. Пока это лишь единственное, что нам остается», — говорит Хинтербихлер.
Кэрролл, тем не менее, считает, что есть еще одна теория «предвзрывной» Вселенной, которая способна объяснить низкий уровень энтропии, имеющийся в нашей Вселенной.
Модель «Мультивселенной»
Появление новых вселенных из «родительской Вселенной»
Гипотетическая модель Мультивселенной избегает недомолвок, связанных со снижением энтропии, как в случае с моделью «Большого отскока», и дает объяснение ее низкого уровня сегодня, говорит Кэрролл. Она берет свое начало из идеи об «инфляции» — хорошо принятой, но неполной модели Вселенной. Термин «инфляция» и первое объяснение этой модели были предложены 1981-м году физиком Аланом Гутом, в настоящий момент работающим в Массачусетском технологическом институте. Согласно данной модели, пространство после Большого взрыва резко расширилось. Настолько резко, что скорость этого расширения оказалась выше скорости света. Согласно квантовой механике, в космосе постоянно происходят случайные, едва заметные колебания энергии. В какой-то момент инфляционного периода пики этих колебаний достигли своего максимума и стали причиной появления галактик, пустот и крупномасштабных низкоэнтропийных структур, которые мы сегодня и наблюдаем во Вселенной.
Сама инфляционная модель была разработана на базе наблюдений за космическим реликтовым микроволновым излучением – самым древним типом излучения, появившимся спустя всего несколько сотен тысяч лет после Большого взрыва. Ученые считают, что инфляционная модель отлично предсказывает его существование.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Согласно одному из предположений, мультивселенная может являться результатом инфляции. В предположении говорится о том, что существует некая одна очень-очень большая Вселенная, время от времени порождающая более компактные вселенные. При этом никакая форма коммуникации между этими вселенными невозможна. Маркус Ву из PBS Nova объясняет:
«В начале 80-х годов физики пришли к мнению, что инфляция может обладать природой бесконечности, останавливаясь лишь в некоторых регионах космоса, создавая некие закрытые «карманы». Однако между этими «карманами» инфляция продолжается, и протекает она быстрее скорости света. В свою очередь, изолированные друг от друга «карманы» со временем становятся Вселенными».
Кэрроллу импонирует больше всего именно эта модель, хотя его собственная предложенная модель несколько отличается от того, что описано выше:
«Это лишь одна из версий теории о мультивселенной, однако основным отличием здесь является то, что «родительская Вселенная» может обладать высоким уровнем энтропии и порождает вселенные с низким ее уровнем», — говорит Кэрролл.
Согласно данной модели, до Большого взрыва было некое большое расширяющееся пространство, из которого родились наша и бесконечное множество других вселенных. Другие вселенные находятся за пределами наших возможностей их обнаружения и могли образоваться как до, так уже и после нашей Вселенной.
Следует отметить, что на данный момент это одна из самых популярных моделей. Тем не менее ученые, разумеется, по-разному ее воспринимают. Одни поддерживают эту идею, другие, наоборот, совершенно с ней не согласны. Но если брать в пример Питера Войта из Колумбийского университета, то теория Мультивселенной хоть и выглядит очень привлекательной с научно-популярной точки зрения, но способна сделать физиков ленивыми и заставить прекратить поиск ответов на самые базовые вопросы, например, — почему физические константы в нашей Вселенной именно такие, какие они есть, — списав все на вариативность.
«Теоретики размышляют по поводу возможности существования бесконечного числа Вселенных, и в конечном итоге мы можем прийти к четким моделям, способным объяснить, почему значения (вроде фундаментальных свойств наблюдаемых нами частиц) могут отличаться друг от друга в каждой отдельно взятой Вселенной», — говорит Войт.
Войт опасается, что однажды основным вопросом для науки в этой сфере станет рассуждение на тему «как нам повезло оказаться в этой случайной Вселенной, где все происходит так, а не по-другому, несмотря на бесконечное многообразие возможностей, поэтому давайте бросим эту затею с теориями».
Какой можно подвести итог? Многие физики получают деньги за то, что спорят и пишут книги, в которых стараются описать, как Большой взрыв и модель «предвзрывной» Вселенной способны объяснить то, что мы видим сегодня, хотя сами при этом не знают и на самом деле не могут знать, почему это так. Факт в том, что даже несмотря на серьезные упрощения как в математических моделях, так и объяснениях, мы не приблизились к верному ответу, и нам предстоит провести еще множество рассуждений на эту тему, пока не придем к нужному результату.
«Важно не только выдвигать теории и гипотезы. Куда важнее дать понять людям, что на самом деле мы пока сами не понимаем, о чем говорим. Все это пока лишь на уровне предположений, но я надеюсь, что рано или поздно мы сможем найти нужный ответ, который устроит всех», — говорит Кэрролл.
Источник
Теория Большого взрыва: история эволюции нашей Вселенной
Как появилась наша Вселенная? Как она превратилась в кажущееся на первый взгляд бесконечное пространство? И чем она станет спустя многие миллионы и миллиарды лет? Эти вопросы терзали (и продолжают терзать) умы философов и ученых, кажется, еще с начала времен, породив при этом множество интересных и порой даже безумных теорий. Сегодня большинство астрономов и космологов пришли к общему согласию относительно того, что Вселенная, которую мы знаем, появилась в результате гигантского взрыва, породившего не только основную часть материи, но явившегося источником основных физических законов, согласно которым существует тот космос, который нас окружает. Все это называется теорией Большого взрыва.
Вначале был взрыв.
Основы теории Большого взрыва относительно просты. Если кратко, согласно ей вся существовавшая и существующая сейчас во Вселенной материя появилась в одно и то же время — около 13,8 миллиарда лет назад. В тот момент времени вся материя существовала в виде очень компактного абстрактного шара (или точки) с бесконечной плотностью и температурой. Это состояние носило название сингулярности. Неожиданно сингулярность начала расширяться и породила ту Вселенную, которую мы знаем.
Стоит отметить, что теория Большого Взрывая является лишь одной из многих предложенных гипотез возникновения Вселенной (например, есть еще теория стационарной Вселенной), однако она получила самое широкое признание и популярность. Она не только объясняет источник всей известной материи, законов физики и большую структуру Вселенной, она также описывает причины расширения Вселенной и многие другие аспекты и феномены.
Хронология событий в теории Большого Взрыва
Так все выглядело в разрезе времени.
Основываясь на знаниях о нынешнем состоянии Вселенной, ученые предполагают, что все должно было начаться с единственной точки с бесконечной плотностью и конечным временем, которые начали расширяться. После первоначального расширения, как гласит теория, Вселенная прошла фазу охлаждения, которая позволила появиться субатомным частицам и позже простым атомам. Гигантские облака этих древних элементов позже, благодаря гравитации, начали образовывать звезды и галактики.
Все это, по догадкам ученых, началось около 13,8 миллиарда лет назад, и поэтому эта отправная точка считается возрастом Вселенной. Путем исследования различных теоретических принципов, проведения экспериментов с привлечением ускорителей частиц и высокоэнергетических состояний, а также путем проведения астрономических исследований дальних уголков Вселенной ученые вывели и предложили хронологию событий, которые начались с Большого взрыва и привели Вселенную в конечном итоге к тому состоянию космической эволюции, которое имеет место быть сейчас.
Ученые считают, что самые ранние периоды зарождения Вселенной — продлившиеся от 10 -43 до 10 -11 секунды после Большого взрыва, — по прежнему являются предметом споров и обсуждений. Если учесть, что те законы физики, которые нам сейчас известны, не могли существовать в это время, то очень сложно понять, каким же образом регулировались процессы в этой ранней Вселенной. Кроме того, экспериментов с использованием тех возможных видов энергий, которые могли присутствовать в то время, до сих пор не проводилось. Как бы там ни было, многие теории о возникновении Вселенной в конечном итоге согласны с тем, что в какой-то период времени имелась отправная точка, с которой все началось.
Тайны сингулярности
Сингулярность мало кто может объяснить человеческим языком.
Также известная как планковская эпоха (или планковская эра) принимается за самый ранний из известных периодов эволюции Вселенной. В это время вся материя содержалась в единственной точке бесконечной плотности и температуры. Во время этого периода, как считают ученые, квантовые эффекты гравитационного взаимодействия доминировали над физическим, и ни одна из физических сил не была равна по силе гравитации.
Планковская эра предположительно длилась от 0 до 10 -43 секунды и названа она так потому, что измерить ее продолжительность можно только планковским временем. Ввиду экстремальных температур и бесконечной плотности материи состояние Вселенной в этот период времени было крайне нестабильным. После этого произошли периоды расширения и охлаждения, которые привели к возникновению фундаментальных сил физики.
Приблизительно в период с 10 -43 до 10 -36 секунды во Вселенной происходил процесс столкновения состояний переходных температур. Считается, что именно в этот момент фундаментальные силы, которые управляют нынешней Вселенной, начали отделяться друг от друга. Первым шагом этого отделения явилось появление гравитационных сил, сильных и слабых ядерных взаимодействий и электромагнетизма.
В период примерно с 10 -36 до 10 -32 секунды после Большого взрыва температура Вселенной стала достаточно низкой (1028 К), что привело к разделению электромагнитных сил (сильное взаимодействие) и слабого ядерного взаимодействия (слабого взаимодействия).
Эпоха инфляции
Можно попробовать визуализировать Вселенную так.
С появлением первых фундаментальных сил во Вселенной началась эпоха инфляции, которая продлилась с 10 -32 секунды по планковскому времени до неизвестной точки во времени. Большинство космологических моделей предполагают, что Вселенная в этот период была равномерно заполнена энергией высокой плотности, а невероятно высокие температура и давление привели к ее быстрому расширению и охлаждению.
Чтобы не пропустить ничего интересного из мира высоких технологий, подписывайтесь на наш новостной канал в Telegram. Там вы узнаете много нового.
Это началось на 10 -37 секунде, когда за фазой перехода, вызвавшей отделение сил, последовало расширение Вселенной в геометрической прогрессии. В этот же период времени Вселенная находилась в состоянии бариогенезиса, когда температура была настолько высокой, что беспорядочное движение частиц в пространстве происходило с околосветовой скоростью.
В это время образуются и сразу же сталкиваясь разрушаются пары из частиц — античастиц, что, как считается, привело к доминированию материи над антиматерией в современной Вселенной. После прекращения инфляции Вселенная состояла из кварк-глюоновой плазмы и других элементарных частиц. С этого момента Вселенная стала остывать, начала образовываться и соединяться материя.
Охлаждение Вселенной
После взрыва все должно было снизить температуру.
Со снижением плотности и температуры внутри Вселенной начало происходить и снижение энергии в каждой частице. Это переходное состояние длилось до тех пор, пока фундаментальные силы и элементарные частицы не пришли к своей нынешней форме. Так как энергия частиц опустилась до значений, которые можно сегодня достичь в рамках экспериментов, действительное возможное наличие этого временного периода вызывает у ученых куда меньше споров.
Например, ученые считают, что на 10 -11 секунде после Большого взрыва энергия частиц значительно уменьшилась. Примерно на 10 -6 секунде кварки и глюоны начали образовывать барионы — протоны и нейтроны. Кварки стали преобладать над антикварками, что в свою очередь привело к преобладанию барионов над антибарионами.
Так как температура была уже недостаточно высокой для создания новых протонно-антипротонных пар (или нейтронно-антинейтронных пар), последовало массовое разрушение этих частиц, что привело к остатку только 1/1010 количества изначальных протонов и нейтронов и полному исчезновению их античастиц. Аналогичный процесс произошел спустя около 1 секунды после Большого взрыва. Только «жертвами» на этот раз стали электроны и позитроны. После массового уничтожения оставшиеся протоны, нейтроны и электроны прекратили свое беспорядочное движение, а энергетическая плотность Вселенной была заполнена фотонами и в меньшей степени нейтрино.
В течение первых минут расширения Вселенной начался период нуклеосинтеза (синтез химических элементов). Благодаря падению температуры до 1 миллиарда кельвинов и снижения плотности энергии примерно до значений, эквивалентных плотности воздуха, нейтроны и протоны начали смешиваться и образовывать первый стабильный изотоп водорода (дейтерий), а также атомы гелия. Тем не менее большинство протонов во Вселенной остались в качестве несвязных ядер атомов водорода.
Спустя около 379 000 лет электроны объединились с этими ядрами водорода и образовали атомы (опять же преимущественно водорода), в то время как радиация отделилась от материи и продолжила практически беспрепятственно расширяться через пространство. Эту радиацию принято называть реликтовым излучением, и она является самым древнейшим источником света во Вселенной.
С расширением реликтовое излучение постепенно теряло свою плотность и энергию и в настоящий момент его температура составляет 2,7260 ± 0,0013 К (-270,424 °C), а энергетическая плотность 0,25 эВ (или 4,005×10 -14 Дж/м³; 400–500 фотонов/см³). Реликтовое излучение простирается во всех направлениях и на расстояние около 13,8 миллиарда световых лет, однако оценка его фактического распространения говорит примерно о 46 миллиардах световых годах от центра Вселенной.
Структурирование Вселенной
Вот что произошло за 14 миллиардов лет.
В последующие несколько миллиардов лет более плотные регионы почти равномерно распределенной во Вселенной материи начали притягиваться друг к другу. В результате этого они стали еще плотнее, начали образовывать облака газа, звезды, галактики и другие астрономические структуры, за которыми мы можем наблюдать в настоящее время. Этот период носит название иерархической эпохи. В это время та Вселенная, которую мы видим сейчас, начала приобретать свою форму. Материя начала объединяться в структуры различных размеров — звезды, планеты, галактики, галактические скопления, а также галактические сверхскопления, разделенные межгалактическими перемычками, содержащими всего лишь несколько галактик.
Детали этого процесса могут быть описаны согласно представлению о количестве и типе материи, распределенной во Вселенной, которая представлена в виде холодной, теплой, горячей темной материи и барионного вещества. Однако современной стандартной космологической моделью Большого взрыва является модель Лямбда-CDM, согласно которой частицы темной материи двигаются медленнее скорости света. Выбрана она была потому, что решает все противоречия, которые появлялись в других космологических моделях.
Согласно этой модели на холодную темную материю приходится около 23 процентов всей материи/энергии во Вселенной. Доля барионного вещества составляет около 4,6 процента. Лямбда-CDM ссылается на так называемую космологическую постоянную: теорию, предложенную Альбертом Эйнштейном, которая характеризует свойства вакуума и показывает соотношение баланса между массой и энергией как постоянную статичную величину. В этом случае она связана с темной энергией, которая служит в качестве акселератора расширения Вселенной и поддерживает гигантские космологические структуры в значительной степени однородными.
Что будет со Вселенной
Будущее знать нельзя, но можно предсказать.
Гипотезы относительно того, что эволюция Вселенной обладает отправной точкой, естественным способом подводят ученых к вопросам о возможной конечной точке этого процесса. Если Вселенная начала свою историю из маленькой точки с бесконечной плотностью, которая вдруг начала расширяться, не означает ли это, что расширяться она тоже будет бесконечно? Или же однажды у нее закончится экспансивная сила и начнется обратный процесс сжатия, конечным итогом которого станет все та же бесконечно плотная точка?
Ответы на эти вопросы были основной целью космологов с самого начала споров о том, какая же космологическая модель Вселенной является верной. С принятием теории Большого взрыва, но по большей части благодаря наблюдению за темной энергией в 1990-х годах, ученые пришли к согласию в отношении двух наиболее вероятных сценариев эволюции Вселенной.
Согласно первому, получившему название «большое сжатие», Вселенная достигнет своего максимального размера и начнет разрушаться. Такой вариант развития событий будет возможен, если только плотность массы Вселенной станет больше, чем сама критическая плотность. Другими словами, если плотность материи достигнет определенного значения или станет выше этого значения (1-3×10 -26 кг материи на м³), Вселенная начнет сжиматься.
Большой взрыв — в таком виде
Альтернативой служит другой сценарий, который гласит, что если плотность во Вселенной будет равна или ниже значения критической плотности, то ее расширение замедлится, однако никогда не остановится полностью. Согласно этой гипотезе, получившей название «тепловая смерть Вселенной», расширение продолжится до тех пор, пока звездообразования не перестанут потреблять межзвездный газ внутри каждой из окружающих галактик. То есть полностью прекратится передача энергии и материи от одного объекта к другому. Все существующие звезды в этом случае выгорят и превратятся в белых карликов, нейтронные звезды и черные дыры.
Постепенно черные дыры будут сталкиваться с другими черными дырами, что привет к образованию все более и более крупных. Средняя температура Вселенной приблизится к абсолютному нулю. Черные дыры в итоге «испарятся», выпустив свое последнее излучение Хокинга. В конце концов термодинамическая энтропия во Вселенной станет максимальной. Наступит тепловая смерть.
Заходите в наш специальный Telegram-чат. Там всегда есть с кем обсудить новости из мира высоких технологий.
Современные наблюдения, которые учитывают наличие темной энергии и ее влияние на расширение космоса, натолкнули ученых на вывод, согласно которому со временем все больше и больше пространства Вселенной будет проходить за пределами нашего горизонта событий и станет невидимым для нас. Конечный и логичный результат этого ученым пока не известен, однако «тепловая смерть» вполне может оказаться конечной точкой подобных событий.
Есть и другие гипотезы относительно распределения темной энергии, а точнее, ее возможных видов (например фантомной энергии). Согласно им галактические скопления, звезды, планеты, атомы, ядра атомов и материя сама по себе будут разорваны на части в результате ее бесконечного расширения. Такой сценарий эволюции носит название «большого разрыва». Причиной гибели Вселенной согласно этому сценарию является само расширение.
История теории Большого взрыва
А вы бы смогли рассказать все это в эфире ВВС?
Самое раннее упоминание Большого взрыва относится к началу 20-го века и связано с наблюдениями за космосом. В 1912 году американский астроном Весто Слайфер провел серию наблюдений за спиральными галактиками (которые изначально представлялись туманностями) и измерил их доплеровское красное смещение. Почти во всех случаях наблюдения показали, что спиральные галактики отдаляются от нашего Млечного Пути.
В 1922 году выдающийся российский математик и космолог Александр Фридман вывел из уравнений Эйнштейна для общей теории относительности так называемые уравнения Фридмана. Несмотря продвижения Эйнштейном теории в пользу наличия космологической постоянной, работа Фридмана показала, что Вселенная скорее находится в состоянии расширения.
В 1924 году измерения Эдвина Хаббла дистанции до ближайшей спиральной туманности показали, что эти системы на самом деле являются действительно другими галактиками. В то же время Хаббл приступил к разработке ряда показателей для вычета расстояния, используя 2,5-метровый телескоп Хукера в обсерватории Маунт Вилсон. К 1929 году Хаббл обнаружил взаимосвязь между расстоянием и скоростью удаления галактик, что впоследствии стало законом Хаббла.
В 1927 году бельгийский математик, физик и католический священник Жорж Леметр независимо пришел к тем же результатам, какие показывали уравнения Фридмана, и первым сформулировал зависимость между расстоянием и скоростью галактик, предложив первую оценку коэффициента этой зависимости. Леметр считал, что в какой-то период времени в прошлом вся масса Вселенной была сосредоточена в одной точке (атоме).
Эти открытия и предположения вызывали много споров между физиками в 20-х и 30-х годах, большинство из которых считало, что Вселенная находится в стационарном состоянии. Согласно устоявшейся в то время модели, новая материя создается наряду с бесконечным расширением Вселенной, равномерно и равнозначно по плотности распределяясь на всей ее протяженности. Среди ученых, поддерживающих ее, идея Большого взрыва казалась больше теологической, нежели научной. В адрес Леметра звучала критика о предвзятости на основе религиозных предубеждений.
Следует отметить, что в то же время существовали и другие теории. Например, модель Вселенной Милна и циклическая модель. Обе основывались на постулатах общей теории относительности Эйнштейна и впоследствии получили поддержку самого ученого. Согласно этим моделям Вселенная существует в бесконечном потоке повторяющихся циклов расширений и коллапсов.
После Второй мировой войны между сторонниками стационарной модели Вселенной (которая фактически была описана астрономом и физиком Фредом Хойлом) и сторонниками теории Большого взрыва, быстро набиравшей популярность среди научного сообщества, разгорелись жаркие дебаты. По иронии судьбы, именно Хойл вывел фразу «большой взрыв», впоследствии ставшую названием новой теории. Произошло это в марте 1949 года на британском радио BBC.
Космос настолько загадочен, что мы не сможем понять даже малую его часть.
В конце концов дальнейшие научные исследования и наблюдения все больше и больше говорили в пользу теории Большого взрыва и все чаще ставили под сомнение модель стационарной Вселенной. Обнаружение и подтверждение реликтового излучения в 1965 году окончательно укрепили Большой взрыв в качестве лучшей теории происхождения и эволюции Вселенной. С конца 60-х годов и вплоть до 1990-х астрономы и космологи провели еще больше исследований вопроса Большого взрыва и нашли решения для многих теоретических проблем, стоящих на пути у данной теории.
Все самые свежие новости из мира высоких технологий вы также можете найти в Google News.
Среди этих решений, например, работа Стивена Хокинга и других физиков, которые доказали, что сингулярность являлась неоспоримым начальным состоянием общей относительности и космологической модели Большого взрыва. В 1981 году физик Алан Гут вывел теорию, описывающую период быстрого космического расширения (эпохи инфляции), которая решила множество ранее нерешенных теоретических вопросов и проблем.
В 1990-х наблюдался повышенный интерес к темной энергии, которую рассматривали как ключ к решению многих нерешенных вопросов космологии. Помимо желания найти ответ на вопрос о том, почему Вселенная теряет свою массу наряду с темной матерей (гипотеза была предложена еще в 1932 году Яном Оортом), также было необходимо найти объяснение тому, почему Вселенная по-прежнему ускоряется.
Дальнейший прогресс изучения обязан созданию более продвинутых телескопов, спутников и компьютерных моделей, которые позволили астрономам и космологам заглянуть дальше во Вселенной и лучше понять ее истинный возраст. Развитие космических телескопов и появление таких, как, например, Cosmic Background Explorer (или COBE), космический телескоп Хаббла, Wilkinson Microwave Anisotropy Probe (WMAP) и космическая обсерватория Планка, тоже внесло бесценный вклад в исследование вопроса.
Сегодня космологи могут с довольно высокой точностью проводить измерения различных параметров и характеристик модели теории Большого взрыва, не говоря уже о более точных вычислениях возраста окружающего нас космоса. А ведь все началось с обычного наблюдения за массивными космическими объектами, расположенными во многих световых годах от нас и медленно продолжающих от нас отдаляться. И несмотря на то, что мы понятия не имеем, чем это все закончится, чтобы выяснить это, по космологическим меркам на это потребуется не так уж и много времени.
Источник