Космология
Начиная с самых ранних этапов своей истории человек стремился понять, как устроен окружающий мир, что такое звезды, планеты, солнце, как они возникли. Многовековые попытки дать ответы на эти вопросы привели к возникновению космологии.
Космология — раздел естествознания, предметной областью которого является изучение свойств и эволюции Вселенной в целом.
Сам термин «космология» образован от двух греческих слов: kosmos — Вселенная и logos — закон, учение.
Космология использует достижения и методы астрономии, физики, математики, философии. Естественно-научной базой космологии являются астрономические наблюдения Галактики и других звездных систем, общая теория относительности, физика микропроцессов и высоких плотностей энергии, релятивистская термодинамика и ряд других новейших физических теорий.
Возникновение современной космологии
Возникновение современной космологии связано с развитием в XX веке общей теории относительности (ОТО) Эйнштейна и физики элементарных частиц. Первое исследование на эту тему, опирающееся на ОТО, Эйнштейн опубликовал в 1917 году под названием «Космологические соображения к общей теории относительности». В ней он ввёл три предположения: Вселенная однородна, изотропна и стационарна. Чтобы обеспечить последнее требование, Эйнштейн ввёл в уравнения гравитационного поля дополнительный «космологический член». Полученное им решение означало, что Вселенная имеет конечный объём (замкнута) и положительную кривизну.
В 1922 году А. А. Фридман предложил нестационарное решение уравнения Эйнштейна, в котором изотропная Вселенная расширялась из начальной сингулярности. Подтверждением теории нестационарной вселенной стало открытие в 1929 году Э. Хабблом космологического красного смещения галактик. Таким образом, возникла общепринятая сейчас теория Большого взрыва (БВ).
По современным научным представлениям, наблюдаемая нами сейчас Вселенная возникла
13,8 млрд лет назад из некоторого начального сингулярного состояния и с тех пор непрерывно расширяется и охлаждается.
Согласно известным ограничениям по применимости современных физических теорий, наиболее ранним моментом, допускающим описание, считается момент Планковской эпохи с температурой примерно 10 32 К (Планковская температура) и плотностью около10 93 г/см³ (Планковская плотность). Ранняя Вселенная в соответствии с моделью БВ представляла собой высокооднородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам.
Принятая в настоящее время периодизация
- Самая ранняя эпоха, о которой существуют какие-либо теоретические предположения, — это планковское время (10 −43 с после Большого взрыва). В это время гравитационное взаимодействие отделилось от остальных фундаментальных взаимодействий. По современным представлениям, эта эпоха квантовой космологии продолжалась до времени порядка 10 −11 с после Большого взрыва.
- Следующая эпоха характеризуется рождением первоначальных частиц кварков и разделением видов взаимодействий. Эта эпоха продолжалась до времён порядка 10 −2 с после Большого взрыва. В настоящее время уже существуют возможности достаточно подробного физического описания процессов этого периода.
- Современная эпоха стандартной космологии началась через 0,01 секунды после Большого взрыва и продолжается до сих пор. В этот период образовались ядра первичных элементов, возникли звёзды, галактики, Солнечная система.
Важной вехой в истории развития Вселенной считается эра рекомбинации, когда материя расширяющейся Вселенной стала прозрачной для излучения. По современным представлениям, это произошло через 380 тыс. лет после Большого взрыва. В настоящее время это излучение мы можем наблюдать в виде реликтового фона, что является важнейшим экспериментальным подтверждением существующих моделей Вселенной.
Итак, XX век считается веком рождения современной космологии. Она возникает в начале века и по мере развития вбирает в себя все новейшие достижения, такие как технологии постройки больших телескопов, космические полёты и компьютеры.
Хронология достижений современной космологии
Первые шаги к уже современной космологии были сделаны в 1908–1916 годы. В это время открытие прямо-пропорциональной зависимости между периодом и видимой звёздной величиной у цефеид в Малом Магеллановом облаке (Генриетта Ливитт, США) позволило Эйнару Герцшпрунгу и Харлоу Шепли разработать метод определения расстояний по цефеидам.
В 1916 г. А. Эйнштейн пишет уравнения общей теории относительности — теории гравитации, ставшей основой для доминирующих космологических теорий. В 1917 году, пытаясь получить решение, описывающее «стационарную» Вселенную, Эйнштейн вводит в уравнения общей теории относительности дополнительный параметр — космологическую постоянную.
В 1922–1924 гг. А. Фридман применяет уравнения Эйнштейна (без космологической постоянной и с ней) ко всей Вселенной и получает нестационарные решения.
В 1929 г. Эдвин Хаббл открывает закон пропорциональности между скоростью удаления галактик и расстоянием до них, позже названный его именем. Становится очевидным, что Млечный путь — лишь небольшая часть окружающей Вселенной. Вместе с этим появляется доказательство для гипотезы Канта: некоторые туманности — галактики, подобные нашей. Одновременно подтверждаются выводы Фридмана о нестационарности окружающего мира, а вместе с тем и верность выбранного направления развития космологии.
С этого момента и вплоть до 1998 года классическая модель Фридмана без космологической постоянной становится доминирующей. Влияние космологической постоянной на итоговое решение изучается, но ввиду отсутствия экспериментальных указаний на её существенность для описания Вселенной такие решения для интерпретации наблюдательных данных не применяются.
В 1932 году Ф. Цвикки выдвигает идею о существовании тёмной материи — вещества, не проявляющего себя электромагнитным излучением, но участвующего в гравитационном взаимодействии. В тот момент идея была встречена скептически, и только около 1975 года она получает второе рождение и становится общепринятой.
В 1946–1949 г.г. Г. Гамов, пытаясь объяснить происхождение химических элементов, применяет законы ядерной физики к началу расширения Вселенной. Так возникает теория «горячей Вселенной» — теория Большого Взрыва, а вместе с ней и гипотеза об изотропном реликтовом излучении с температурой в несколько градусов Кельвина.
В 1964 г. А. Пензиас, Р. Вилсон открывают изотропный источник помех в радиодиапазоне. Тогда же выясняется, что это реликтовое излучение, предсказанное Гамовым. Теория горячей Вселенной получает подтверждение, а в космологию приходит физика элементарных частиц.
В 1991–1993 г.г. в космических экспериментах «Реликт-1» и COBE открыты флуктуации реликтового излучения.
В 1998 г. по далеким сверхновым типа Ia строится диаграмма Хаббла для больших z. Выясняется, что Вселенная расширяется с ускорением. Модель Фридмана допускает подобное только при введении антигравитации, описываемой космологической постоянной. Возникает мысль о существовании особого рода энергии, ответственного за это — тёмной энергии. Появляется современная теория расширения — ΛCDM-модель, включающая в себя как тёмную энергию, так и тёмную материю.
ЕЩЁ МАТЕРИАЛЫ ПО ТЕМЕ:
1″ :pagination=»pagination» :callback=»loadData» :options=»paginationOptions»>
Источник
Современная космология
С самых ранних веков человечество задавалось вопросами о том, какое место оно занимает в мире, что его окружает и как это называется. Как оказалось, звёзды и планеты являются частицами Вселенной, в которой мы находимся. Знания об этих элементах, теории о возникновении мира, физические гипотезы, математические законы, философия – все это впоследствии включилось в одну единую науку. Которую, как известно, назвали космология. Далее мы хотели бы рассказать об основах современной космологии, ее достижениях и концептуальных взглядах.
Космология
Возникновение современной космологии
Если говорить о периоде, когда вышеназванная наука получила наибольшее развитие, то стоит сказать о 20 веке. Тогда Альберт Эйнштейн выдвинул сразу несколько теорий относительно Вселенной. Впоследствии он доказал их на примере уравнения гравитационного поля. Обозначенные исследования были связаны с общей теорией относительности. Которая, к тому же, на тот момент получила общественную огласку.
Альберт Эйнштейн
В своем первой работе (Космологические соображения к общей теории относительности) Эйнштейн вывел три предположения. В них он рассматривал Вселенную однородной, стационарной и изотропной.
Как мы уже сказали, для доказательства сказанного он использовал уравнения гравитационного пола. Интересно, что в него учёный ввёл дополнительную переменную. В итоге, удалось получить решение задачи. Именно оно послужило доказательством его предположений. Получается, что Вселенная имеет определенные границы и положительную кривизну.
Однако, на этом исследования не закончились. Следующим работу над уравнением продолжил Александр Александрович Фридман (1922 г). Он выдвинул другое, нестационарное решение. Согласно его мнению, Вселенная расширялась из начальной сингулярности.
Физик Александр Александрович Фридман
Впоследствии предположение Фридмана подтвердилось. В то время, когда Эдвин Хаббл открыл космологическое красное смещение. За счет вышеназванных открытий удалось получить актуальную и в данный момент теорию Большого Взрыва. Если говорить обобщенно, фундаментом современной космологии являются именно открытия 20 века. Несмотря на то, что начало изучения науки было положено в гораздо более ранние времена.
На самом деле современная космология установила возраст вселенной. По примерным подсчетам учёных он составляет 13,8 миллиарда лет.
Принятая в настоящее время периодизация
На данный момент самой ранней эпохой считается планковское время. Потому как наиболее ранние теоретические идеи возникли именно в этот период. Согласно имеющимся данным, в этом периоде гравитационное взаимодействие стало самостоятельным. К тому же, оно отделилось от остальных фундаментальных сил. Следующий период обозначается в науке, как появление первых частиц кварков и разделение сил взаимодействия. Так как эпоха обусловлена более поздним промежутком времени, то ученые смогли получить достаточно подробное описание всех происходящих тогда процессов.
По-видимому, последний же отрезок характеризуется созданием небесных тел (звезд), галактики и Солнечной системы в целом. Более того, это время и по сей день считается незавершённым.
Стоит отметить, что одной из одной из важнейших эр для эволюции Вселенной является эра рекомбинации. Именно в это время Вселенная стала прозрачной для излучения, а значит его можно увидеть, например, в виде реликтового фона. Подобный эксперимент стал наглядным подтверждением наличия моделей Вселенной.
Реликтовое излучение
Развитие современной космологии как науки
Прежде, чем перейти к современным достижениям в области космологии, стоит сказать о некоторых других этапах исследований. В первую очередь нужно отметить труды Николая Коперника (15 век). В своих работах он обобщил все накопленные за прошлые периоды знания. Сюда же вошли труды Самосского, Леонардо да Винчи, Гераклита и Кузо. Основой идеи стало то, что Солнечная система была инерциальной. То есть, в центре находилось солнце. вокруг которого двигались планеты, в том числе и Земля.
Солнечная система
Несколько позднее свой вклад в космологию внес Кеплер. В конце концов, он основал три важнейшие теории. На самом деле именно их впоследствии использовал Ньютон для законов динамики. В остальном же, другие наиболее существенные открытия произошли в 20 веке. Как мы уже упоминали выше, первыми своими наработками поделились Эйнштейн, Фридман и Хаббл. Далее же Фриц Цвикки выдвигает идею о существовании определенного вещества. Которое не реагирует с электромагнитным излучением, но участвует в гравитационном воздействии. Его решили назвать темной материей.
Тёмная материя
Следующими выделились Гамов (с теорией горячей Вселенной), Пензиас и Вилсон (которые открыли изотропный источник помех в радиодиапазоне).
В заключении, можно сказать что физические законы достаточно плотно связаны с космологией. Так как многие результаты и доказательства теорий были обоснованы именно с физической точки зрения.
Основные концептуальные взгляды космологии
На самом деле идей возникновения Вселенной несколько. Одну из них можно назвать теологической. То есть той, которая прописана в Библии. Согласно писаниям, до определенного момента Вселенная была скрыта от других и являлась чем-то невидимым, недостижимым для чужих глаз.
Вселенная
Другие же предположения исходили из научных соображений. Первым был Эйнштейн, утверждавший, что Вселенная находится в стационарном положении. Впоследствии его опроверг Фридман, доказавший ее сужение и расширение за счет определенных движений. Далее, по результатам исследований Хаббла, выяснились наиболее точные расстояния от других галактик и была создана теория Большого взрыва.
Источник
Космология: эволюция и происхождение Вселенной
Космология — это такой раздел астрономии. Возможно именно тот, который вызывает у человека наибольший взрыв мозга из-за затронутых в нем тем. Здесь рассматриваются вопросы, на которые пока трудно ответить. Эти проблемы, как однажды сказал Карл Саган, когда-то рассматривались лишь в мифах и религиозных текстах.
Космология полна загадок
Космология изучает происхождение и эволюцию Вселенной . От Большого взрыва до настоящего времени. А также пытается заглянуть в далекое будущее. Космологи изучают свойства Вселенной в самых широких масштабах. И это далеко не простая задача. Попытки найти ответы на вопросы о судьбе Вселенной, или ее происхождения, отнюдь не являются второстепенными проблемами.
Космологи изучают самые разнообразные и сложные понятия. От теории струн до темной энергии и темной материи. И даже гипотезы о том, что мы, на самом деле, живем в Мультивселенной. Или, если быть точнее, в одной из вселенных, из которых она состоит. В отличие от других разделов астрономии, в космологии объектом исследования является не какая-то конкретная часть Вселенной. И не звезды или галактики. Сама Вселенная изучается этой наукой как единое целое.
Ученые, которые посвятили всю свою жизнь космологии, постоянно сталкиваются со всевозможными серьезными вопросами. Какое будущее ждет нашу Вселенную ? Что было до Большого взрыва? Какова форма Вселенной? Размышления на эти темы могут запросто вызвать небольшие завихрения в мозгу.🤓
История космологии
Наше понимание Вселенной с течением времени сильно менялось. На заре развития астрономии люди верили, что Земля является центром всего космоса . И именно вокруг нее вращаются все планеты и звезды. Только в начале XVI века Николай Коперник предположил, что это вовсе не так. Он первым понял, что Земля и другие планеты Солнечной системы, на самом деле, вращаются вокруг Солнца. Это вызвало глубокие изменения в нашем представлении о том, что такое космос.
В 17 веке Исаак Ньютон рассчитал, как взаимодействуют гравитационные силы. А на заре 20 века мы сделали еще один шаг вперед. Великий Альберт Эйнштейн предложил объединить пространство и время . Сегодня мы называем это общей теорией относительности.
В начале прошлого века ученые часто задавались вопросом, является ли Млечный Путь всей Вселенной? Или это лишь его малая часть?
Эдвин Хаббл первым рассчитал расстояние до галактики Андромеда . Таким образом он определил, что она находится за пределами Млечного Пути.
Итак, вдруг выяснилось, что наша Галактика является всего лишь крошечной каплей в гигантском океане Вселенной. Используя общую теорию относительности, Эдвин Хаббл смог измерить расстояния и до других галактик. Ученый с удивлением узнал, что почти все они удаляются от нас. После этого открытия стало ясно, что Вселенная не статична. И она постоянно расширяется .
Вопросы и ответы
Космология, несмотря на всю свою сложность, уже смогла найти ответы на некоторые глобальные ответы. Да, они, наверное, не настолько исчерпывающие, как хотелось бы. Однако лучше что-то, чем ничего.
Один из наиболее распространенных из подобных вопросов звучит так: где произошел Большой взрыв ? И на него, наверное, дан самый сложный ответ. Он таков: Большой взрыв произошел не в какой-то определенной точке Вселенной. Он произошел сразу и везде. Потому что, в конце концов, именно в этот момент появились пространство и время. Во Вселенной нет места, на которое мы могли бы указать и сказать «здесь произошел Большой взрыв!».
Но если все галактики удаляются от нас, возникает вопрос — не означает ли это, что мы находимся в центре Вселенной? Ответ на него довольно прост. Если бы мы оказались в какой-то другой галактике, то увидели бы тот же эффект. В некотором смысле это похоже на представление Вселенной в виде гигантского воздушного шара. Если вы отметите на нем несколько точек, и начнете его надувать, все точки будут равномерно удаляться от остальных. Хотя ни одна из них и не находится в условном центре поверхности шара.
Самые большие вопросы космологии
Но, возможно, два самых головокружительных вопроса космологии касаются возраста Вселенной и ее будущего. Космическая обсерватория Планк помогла ученым установить, что возраст Вселенной — примерно 13,8 миллиарда лет. С погрешностью плюс-минус 100 миллионов лет. Планк помог выполнить подобные расчеты после наблюдения за небольшими перепадами температур в фоновом излучении.
Но каково будущее нашей Вселенной? Наступит ли когда-нибудь конец ее существованию? Ученые считают, что это зависит от разных факторов. Например, от общей плотности вещества в космосе .
И астрономы рассчитали значение этой «критической плотности».
Выяснилось, что если плотность Вселенной на самом деле выше этого критического уровня, расширение Вселенной замедлится. И, в конце концов, оно обратится вспять, и Вселенная схлопнется. Чтобы потом опять взорваться. Однако, если все обстоит наоборот, и плотность ниже критической, Вселенная будет продолжать расширяться бесконечно. И, в итоге, переживет так называемую «тепловую смерть» .
На данный момент это наиболее популярная гипотеза.
Друзья! Если вам понравилась эта статья, обязательно оставьте комментарий вот по этой ссылке . Это можно сделать с использованием Вашей учетной записи Яндекс, Вконтакте, Фейсбук, Одноклассники.
Ставьте лайк и обязательно поделитесь ей в социальных сетях!
А еще Вам могут понравиться эти статьи:
Источник