Какой возраст нашей Вселенной по современным оценкам?
В XX в. физики совершили грандиозное открытие. Оказывается, Вселенная не существует вечно, а возникла когда-то в результате Большого Взрыва. Сколько же лет нашей Вселенная?
Ученые утверждают, что ей около 13,8 млрд лет. Если быть более точным, ее возраст составляет 13,799 ± 0,021 млрд лет. Вычислить это значение астрономы смогли с помощью математической модели, описывающей расширение Вселенной. Очевидно, что если Вселенная расширяется, то в прошлом она, наоборот, была меньше, чем сейчас. Можно посчитать, сколько лет назад ее размер был не больше точки. Для такого расчета надо знать постоянную Хаббла – константа, которая показывает скорость расширения Вселенной. В итоге довольно сложные вычисления и приводят нас к цифре 13,8 млрд лет.
Эта оценка подтверждается и экспериментально. Сегодня астрономы умеют оценивать возраст удаленных от нас звезд. Обычно звезды сгруппированы в скопления примерно одного возраста. Наблюдения показывают, что старейшие звезды имеют возраст, равный примерно 13,2 млрд лет. Это значит, что они сформировались уже через 500 млн лет после Большого Взрыва. Надо отметить, что ещё несколько десятилетий назад возраст некоторых звезд оценивался в 14 и даже 16 млрд лет, что опровергает оценку возраста Вселенной в 13,8 млрд лет. Однако использование более совершенных методов определения звездного возраста приводит его в допустимые рамки.
Также оценить возраст Вселенной можно, просто измеряя расстояние до известных нам космических объектов. Самый удаленный от нас объект – это галактика GN-z11. Свет от нее до Земли шел в течение 13,4 млрд лет. Значит, возраст Вселенной должен быть несколько больше. Ещё дальше находится так называемая поверхность последнего рассеяния реликтового излучения, до которого как раз примерно 13,8 млрд лет.
Реликтовое излучение возникло уже через 380 тыс. лет после Большого Взрыва, когда только начали образовываться первые атомы водорода и гелия. Исследование этого излучения позволяет лучше понять процессы, проходившие на начальных этапах жизни Вселенной.
В итоге и ряд теоретических моделей, и практические наблюдения подтверждают, что нашей Вселенной примерно 13,8 млрд лет, хотя в будущем с развитием науки и технологий эта цифра может измениться.
Список использованных источников
Источник
Возраст Вселенной
Какой возраст Вселенной — это один из самых актуальных вопросов для ученых разных поколений. Для обозначения точного отрезка времени с момента расширения космического пространства, астрономы использовали несколько методов. Ввиду задействования нескольких линий исследований было выяснено, что нашему мирозданию 13,8 млрд лет.
Первые гипотезы
В античные времена, люди воспринимали космос, как что-то вечное и незыблемое. Только в 150 году до н.э., было определено, что Вселенной почти 2 млрд лет. Уже в 17 веке, ученый Дж. Лайтфут изучил информацию, изложенную в Библии, и заявил, что начало мироздания выпадает на 3929 год до н.э.
Основоположники современной науки Исаак Ньютон и Иоганн Кеплер, изучив данные о космическом пространстве, сделали вывод что ее появление приходиться на 3993-3988 года до н.э.
Способы определения возраста
Возраст Вселенной по современным оценкам равен 13,8 млрд лет. Существует два надежных способа определения временных рамок появления мироздания. Первый метод основан на изучении свечения белых карликов. Объемные и горячие небесные тела — это конечная фаза жизни всех звезд, которые полностью сожгли свое термоядерное вещество. Белый карлик состоит из углерода и водорода, в составе его тонкой атмосферы наблюдается наличие гелия. Центральный участок звезд нагрет до нескольких миллионов Кельвинов. Его остывание происходит очень медленно, так как он светит за счет накопленной энергии. Изучив скопления белых карликов, астрономы пришли к выводу, что им 12-13 млрд лет.
Еще один способ определения возраста Вселенной — по ее расширению. Для этого, ученые собирают такие данные:
- Изменение яркости и расстояния между объектами.
- Состав космического пространства. Большую часть составляет темная энергия и материя. В том случае, если бы преобладала простая материя, то возраст мироздания составил не более 10 млрд лет.
- Тенденция расширения космического пространства.
Собрав всю информацию, ученые экстраполируют ее обратно во времени и в результате получают ту самую цифру в 13,8 млрд лет.
Точный возраст Вселенной
Несмотря на то, что использование космологической модели позволило нам узнать время, с момента Большого взрыва, ученые не перестают уточнять и корректировать полученные данные.
В мае 2009 года был запущен телескоп “Planck”. Аппарат был разработан для длительной работы в космическом пространстве. С его помощью удалось просканировать излучения всевозможных звездных объектов. Первые результаты астрономы получили в 2010 году, а поставить точку в определении точной цифры существования мироздания удалось в 2013 году.
Ученые выяснили, что скорость расширения границ космоса составляет 67,15 км/с. Это говорит о том, что со времени Большого взрыва прошло 13,798 млрд лет.
Источник
Возраст Вселенной
Для того, чтобы пройти этот путь, Вселенной понадобилось немало времени. Смотреть в полном размере.
Возраст Вселенной по современным оценкам составляет 13,7 ± 0,2 млрд лет. Этим понятием называют временной отрезок от момента начала расширения Вселенной и до сегодняшнего дня. Определить данное значение можно большим множеством способов, которые мы рассмотрим далее.
Первые предположения
Представляя Землю центром мира, ученые древности заранее ставили себя в тупик
Вопросом о возрасте мироздания философы задавались еще в античность. Греки и вавилоняне утверждали о вечности мира, индуисты же в 150-м году до н.э. определили точную цифру — 1 млрд. 972 млн. 949 тыс. 091 год, и среди своих современников оказались ближе всех к истине. В XVII веке английский теолог Джон Лайтфут глубоко проанализировав библейские тексты, заявил, что сотворение мира выпало на 3929 год до н.э.
Однако, известные ученые того времени, а именно немецкий астроном Иоганн Кеплер и английский физик Исаак Ньютон, опираясь не только на Библию, но и на астрономические наблюдения, все же недалеко ушли от теологов и представили 3993 и 3988 годы до н.э.
Определение возраста Земли
Принцип радиоизотопного датирования по углероду. Так определяют возраст ископаемых останков живых существ на Земле.
С середины XVIII века люди начали направленно изучать возраст Земли. Согласно известным физическим моделям ученый из Франции Жорж-Луи Леклерк де Бюффон оценил время, которое потребовалось бы для понижения температуры Земли с момента ее образования до той, которую имеет она сегодня (от 75 до 168 тыс. лет). Как утверждает физическая модель Земли, изначально она представлялась раскаленным шаром. В 1895-м году инженер из Ирландии — Джон Перри пересчитал эту цифру и получил 2–3 млрд лет. В 1896-м году Антуан Беккерель открыл радиоактивность, а спустя 9 лет британский физик Эрнест Резерфорд предложил метод оценки возраста земных пород при помощи радиоактивного распада.
Идея заключалась в том, чтобы определить, какая часть радиоактивного изотопа успела распасться, используя известные периоды полураспада, вычислить возраст образца. Основы радиоизотопного датирования разработал американский радиохимик Бертрам Болтвуд. При помощи данного метода в 1920-х годах было выявлено, что возраст некоторых минералов около 2-х миллиардов лет! Очевидно, возраст Земли не может превышать возраст самого мироздания, поэтому это открытие подвигло ученых найти действенный метод подсчета возраста Вселенной.
Сегодня считается, что с момента зарождения Земли как планеты прошло 4,54 ± 0,05 млрд лет.
Тепло белых карликов
Как нам известно, белые карлики, конечный этап жизни большинства звезд, очень долго остывают. Определив основные характеристики такой звезды, можно рассчитать ее изначальную температуру, а также скорость, с которой она остывает. На основе этих данных уже относительно просто высчитывается возраст рассматриваемого белого карлика. Совершивший множество значительных открытий, телескоп «Хаббл» в 2002-м и 2007-м годах обнаружил самых холодных белых карликов. Возраст этих светил оказался 11,5-12 млрд лет. Если прибавить к этим значениям от полумиллиарда до миллиарда лет (возраст звезд, образовавших этих белых карликов), то получится минимальное значение возраста Вселенной.
Белый карлик в представлении художника
Максимальный возможный возраст определяется отсутствием менее разогретых белых карликов и составляет 15 млрд лет. Так как если бы мироздание было старше, то ученым удалось бы обнаружить хотя бы несколько настолько древних объектов.
Старые звездные скопления
Млечный Путь насчитывает более 160-ти так называемых шарообразных звездных скоплений, число звезд в которых может колебаться от тысяч до миллионов. При этом все эти светила, связаны гравитационной силой, и вероятнее всего образовались из одного газового облака. Отсюда следует, что большая часть звезд таких скоплений зародилась практически в одно время. В силу своего строения и размеров каждая звезда пошла своим эволюционным путем, а некоторые уже находятся на стадии того же белого карлика. Высчитывая возраст каждой астрономической единицы рассматриваемого скопления, можно с большой точностью определить возраст самого шарообразного скопления.
При помощи того же телескопа «Хаббл» астрономы смогли проанализировать возраст 41 шарообразного звездного скопления Млечного Пути. В результате было выявлено, что все скопления нашей галактики не младше 10 млрд лет, а наиболее старое (M4) имеет возраст 12,7 ± 0,7 миллиардов лет. Поэтому, учитывая некоторое время до формирования звезд, нижней границей возраста Вселенной стало число 13 млрд лет.
Старейшее звездное скопление Млечного пути — Мессье 4 (M4)
Хаббловское время
Но вопросом о возрасте мироздания занимался не только телескоп, названый в честь ученого, но и сам ученый, американский астроном Эдвин Хаббл. Ему удалось вывести свою известную формулу v = H*D, где v – скорость расширения Вселенной, D – расстояние от наблюдаемой галактики до наблюдателя, а H – постоянная Хаббла, которая обратно пропорциональна времени. О существовании постоянной Хаббла, как величины, определяющей зависимость между расстоянием до объекта и скоростью его удаления, впервые предположил священник астроном из Бельгии — Жорж Леметр. Согласно его идее, мир произошел из одного, условно говоря, атома, а после — стал расширяться. Позже, эта теория шутливо была названа «Большим Взрывом», но в дальнейшем этот термин прочно закрепился в космологии.
Э.П. Хаббл со снимком галактики Андромеда в руках
Спустя некоторое время, в 1929 году Э. Хаббл получил более точное значение упомянутой постоянной. Очевидно, что возраст мироздания напрямую зависит от постоянной Хаббла. Изначально, используя имеющуюся модель Вселенной, ученые рассчитали, что величину, обратно пропорциональную постоянной Хаббла нужно умножить на 2/3. Однако в таком случае искомая величина составляет около 1,2 млрд лет, число, близкое к тому, что предложили индуисты еще в 150-м году до н.э. Впрочем, к концу XX-го века уже были получены астрономические данные, которые говорили о возрасте 13-15 млрд лет.
Как выяснилось, причиной неправильной оценки стали неверные представления о расширении Вселенной. Только в 1999-м году две группы астрономов смогли доказать, что последние 5-6 млрд лет расширение космического пространства ускоряется, а не замедляется, как считалось ранее. По современным подсчетам этим методом ученые вывели значение 13,798 ± 0,037 лет.
Микроволновое излучение
Карта распределения реликтового излучения. Смотреть в полном размере.
30 июня 2001 года NASA запустила в космос аппарат под названием Wilkinson Microwave Anisotropy Probe (WNAP), задача которого изучать реликтовое излучение. При помощи результатов его наблюдений была построена новая карта (с разрешением в 35 раз больше, нежели предыдущая) распределения реликтового, микроволнового излучения. Анализируя эту карту, помимо насыщенной полосы в центре, излучаемой Млечным Путем, можно заметить распределение реликтового излучения за его пределами. Явно видимые неоднородности формируют пятнистую структуру, причем неравномерную. Подробное изучение этой структуры дает возможность точно оценить время, которое понадобилось для ее образования, вследствие Большого Взрыва. Оно составляет 13,7 ± 0,2 млрд лет.
При помощи описанных выше методов, ученые смогли достаточно точно определить возраст Вселенной, что несет первостепенное значение для космологии, а также для понимая нашего мироздания в целом.
‘ alt=»yH5BAEAAAAALAAAAAABAAEAAAIBRAA7 — Возраст Вселенной» title=»Возраст Вселенной»>
Похожие статьи
Понравилась запись? Расскажи о ней друзьям!
Источник
Возраст мироздания
Люди с древних времен интересовались возрастом Вселенной. И хотя у нее нельзя спросить паспорт, чтобы посмотреть дату рождения, современная наука смогла ответить на этот вопрос. Правда, лишь совсем недавно.
Мудрецы Вавилона и Греции считали мироздание вечным и неизменным, а индуистские хронисты в 150 году до н.э. определили, что ему в точности 1 972 949 091 год (кстати, по порядку величины они не сильно ошиблись!). В 1642 году английский теолог Джон Лайтфут путем скрупулезного анализа библейских текстов вычислил, что сотворение мира пришлось на 3929 год до н.э.; спустя несколько лет ирландский епископ Джеймс Ашер передвинул его на 4004 год. Основатели современной науки Иоганн Кеплер и Исаак Ньютон тоже не прошли мимо этой темы. Хотя они апеллировали не только к Библии, но и к астрономии, их результаты оказались похожими на вычисления богословов — 3993 и 3988 годы до н.э. В наше просвещенное время возраст Вселенной определяют иными способами. Чтобы увидеть их в исторической проекции, поначалу взглянем на собственную планету и ее космическое окружение.
Гадание по камням
Со второй половины XVIII века ученые начали оценивать возраст Земли и Солнца на основе физических моделей. Так, в 1787 году французский натуралист Жорж-Луи Леклерк пришел к выводу, что, если бы наша планета при рождении была шаром из расплавленного железа, ей нужно было бы от 75 до 168 тысяч лет, чтобы остыть до нынешней температуры. Через 108 лет ирландский математик и инженер Джон Перри заново просчитал тепловую историю Земли и определил ее возраст в 2–3 млрд лет. В самом начале XX столетия лорд Кельвин пришел к выводу, что если Солнце постепенно сжимается и светит исключительно за счет высвобождения гравитационной энергии, то его возраст (и, следовательно, максимальный возраст Земли и остальных планет) может составить несколько сотен миллионов лет. Но в то время геологи не смогли ни подтвердить, ни опровергнуть эти оценки из-за отсутствия надежных методов геохронологии.
В середине первого десятилетия ХХ века Эрнест Резерфорд и американский химик Бертрам Болтвуд разработали основы радиометрической датировки земных пород, которая показала, что Перри был много ближе к истине. В 1920-х были найдены образцы минералов, чей радиометрический возраст приближался к 2 млрд лет. Позднее геологи не раз повышали эту величину, и к настоящему времени она выросла более чем вдвое — до 4,4 млрд. Дополнительные данные предоставляет исследование «небесных камней» — метеоритов. Почти все радиометрические оценки их возраста укладываются в интервал 4,4–4,6 млрд лет.
Современная гелиосейсмология позволяет непосредственно определить и возраст Солнца, который, по последним данным, составляет 4,56–4,58 млрд лет. Поскольку продолжительность гравитационной конденсации протосолнечного облака исчислялась всего лишь миллионами лет, можно уверенно утверждать, что от начала этого процесса до наших дней прошло не более 4,6 млрд лет. При этом солнечное вещество содержит множество элементов тяжелее гелия, которые образовались в термоядерных топках массивных звезд прежних поколений, выгоревших и взорвавшихся сверхновыми. Это означает, что протяженность существования Вселенной сильно превышает возраст Солнечной системы. Чтобы определить меру этого превышения, нужно выйти сначала в нашу Галактику, а затем и за ее пределы.
Следуя за белыми карликами
Время жизни нашей Галактики можно определять разными способами, но мы ограничимся двумя самыми надежными. Первый метод основан на мониторинге свечения белых карликов. Эти компактные (примерно с Землю величиной) и изначально очень горячие небесные тела представляют собой конечную стадию жизни практически всех звезд за исключением самых массивных. Для превращения в белый карлик звезда должна полностью сжечь все свое термоядерное топливо и претерпеть несколько катаклизмов — например, на какое-то время стать красным гигантом.
Типичный белый карлик почти полностью состоит из ионов углерода и кислорода, погруженных в вырожденный электронный газ, и имеет тонкую атмосферу, в составе которой доминируют водород или гелий. Его поверхностная температура составляет от 8 000 до 40 000 К, в то время как центральная зона нагрета до миллионов и даже десятков миллионов градусов. Согласно теоретическим моделям, могут также рождаться карлики, состоящие преимущественно из кислорода, неона и магния (в которые при определенных условиях превращаются звезды с массой от 8 до 10,5 или даже до 12 солнечных масс), однако их существование еще не доказано. Теория также утверждает, что звезды, как минимум вдвое уступающие Солнцу по массе, заканчивают жизнь в виде гелиевых белых карликов. Такие звезды очень многочисленны, однако они сжигают водород крайне медленно и посему живут многие десятки и сотни миллионов лет. Пока что им просто не хватило времени, чтоб исчерпать водородное горючее (очень немногочисленные гелиевые карлики, обнаруженные к настоящему времени, обитают в двойных системах и возникли совсем другим путем).
Коль скоро белый карлик не может поддерживать реакции термоядерного синтеза, он светит за счет накопленной энергии и потому медленно остывает. Темпы этого охлаждения можно вычислить и на этой основе определить время, потребное для снижения температуры поверхности от первоначальной (для типичного карлика это примерно 150 000 К) до наблюдаемой. Поскольку нас интересует возраст Галактики, следует искать самые долгоживущие, а потому и самые холодные белые карлики. Современные телескопы позволяют обнаружить внутригалактические карлики с температурой поверхности менее 4000 К, светимость которых в 30 000 раз уступает солнечной. Пока они не найдены — либо их нет вообще, либо очень мало. Отсюда следует, что наша Галактика не может быть старше 15 млрд лет, иначе они бы присутствовали в заметных количествах.
Это верхняя граница возраста. А что можно сказать о нижней? Самые холодные из ныне известных белых карликов были зарегистрированы космическим телескопом «Хаббл» в 2002 и 2007 годах. Вычисления показали, что их возраст составляет 11,5–12 млрд лет. К этому еще нужно добавить возраст звезд-предшественниц (от полумиллиарда до миллиарда лет). Отсюда следует, что Млечный Путь никак не моложе 13 млрд лет. Так что окончательная оценка его возраста, полученная на основе наблюдения белых карликов, — примерно 13–15 млрд лет.
Природные часы
Согласно радиометрической датировке, самыми старыми породами на Земле сейчас считаются серые гнейсы побережья Большого Невольничьего озера на северо-западе Канады — их возраст определен в 4,03 млрд. лет. Еще раньше (4,4 млрд. лет назад) кристаллизовались мельчайшие зерна минерала циркона, природного силиката циркония, найденные в гнейсах на западе Австралии. А раз в те времена уже существовала земная кора, наша планета должна быть несколько старше. Что касается метеоритов, наиболее точную информацию дает датировка кальциево-алюминиевых вкраплений в веществе каменноугольных хондритовых метеоритов, которое практически не изменилось после его формирования из газопылевого облака, окружавшего новорожденное Солнце. Радиометрический возраст подобных структур в метеорите Ефремовка, найденном в 1962 году в Павлодарской области Казахстана, составляет 4 млрд. 567 млн лет.
Шаровые свидетельства
Второй метод основан на исследовании шарообразных звездных скоплений, находящихся в периферийной зоне Млечного Пути и обращающихся вокруг его ядра. Они содержат от сотен тысяч до более чем миллиона звезд, связанных взаимным притяжением.
Шаровые скопления имеются практически во всех крупных галактиках, причем их количество порой достигает многих тысяч. Новые звезды там практически не рождаются, зато пожилые светила присутствуют в избытке. В нашей Галактике зарегистрировано около 160 таких шаровых скоплений, и, возможно, будут открыты еще два-три десятка. Механизмы их формирования не вполне ясны, однако, вероятнее всего, многие из них возникли вскоре после рождения самой Галактики. Поэтому датировка формирования древнейших шаровых скоплений позволяет установить и нижнюю границу галактического возраста.
Такая датировка весьма сложна технически, но в основе ее лежит очень простая идея. Все звезды скопления (от сверхмассивных до самых легких) образуются из одного итого же газового облака и потому рождаются практически одновременно. С течением времени они выжигают основные запасы водорода — одни раньше, другие позже. На этой стадии звезда покидает главную последовательность и претерпевает серию превращений, которые завершаются либо полным гравитационным коллапсом (за которым следует формирование нейтронной звезды или черной дыры), либо возникновением белого карлика. Поэтому изучение состава шарового скопления позволяет достаточно точно определить его возраст. Для надежной статистики число изученных скоплений должно составить не менее нескольких десятков.
Такую работу три года назад выполнила команда астрономов, пользовавшихся камерой ACS (Advanvced Camera for Survey) космического телескопа «Хаббл». Мониторинг 41 шарового скопления нашей Галактики показал, что их средний возраст составляет 12,8 млрд лет. Рекордсменами оказались скопления NGC 6937 и NGC 6752, удаленные от Солнца на 7200 и 13 000 световых лет. Они почти наверняка не моложе 13 млрд лет, причем наиболее вероятное время жизни второго скопления — 13,4 млрд лет (правда, с погрешностью плюс-минус миллиард).
Однако же наша Галактика должна быть постарше своих скоплений. Ее первые сверхмассивные звезды взрывались сверхновыми и выбрасывали в космос ядра многих элементов, в частности, ядра стабильного изотопа бериллия — бериллия-9. Когда начали формироваться шаровые скопления, их новорожденные звезды уже содержали бериллий, причем тем больше, чем позже они возникли. По содержанию бериллия в их атмосферах можно выяснить, насколько скопления моложе Галактики. Как свидетельствуют данные по скоплению NGC 6937, эта разница составляет 200–300 млн лет. Так что без большой натяжки можно сказать, что возраст Млечного Пути превышает 13 млрд лет и, возможно, достигает 13,3–13,4 млрд. Это практически такая же оценка, как и сделанная на основании наблюдения белых карликов, но получена она совершенно иным способом.
Закон Хаббла
Научная постановка вопроса о возрасте Вселенной стала возможной лишь в начале второй четверти прошлого века. В конце 1920-х годов Эдвин Хаббл и его ассистент Милтон Хьюмасон занялись уточнением расстояний до десятков туманностей за пределами Млечного Пути, которые лишь несколькими годами ранее стали считать самостоятельными галактиками.
Эти галактики удаляются от Солнца с радиальными скоростями, которые были измерены по величине красного смещения их спектров. Хотя дистанции до большинства таких галактик удалось определить с большой погрешностью, Хаббл все же выяснил, что они примерно пропорциональны радиальным скоростям, о чем и написал в статье, опубликованной в начале 1929 года. Два года спустя Хаббл и Хьюмасон подтвердили этот вывод на основании результатов наблюдений других галактик — некоторые из них отдалены более чем на 100 млн световых лет.
Эти данные легли в основу прославленной формулы v = H0d, известной как закон Хаббла. Здесь v — радиальная скорость галактики по отношению к Земле, d — расстояние, H0 — коэффициент пропорциональности, чья размерность, как легко видеть, обратна размерности времени (раньше его называли постоянной Хаббла, что неверно, поскольку в предшествующие эпохи величина H0 была иной, чем в наше время). Сам Хаббл и еще многие астрономы долгое время отказывались от предположений о физическом смысле этого параметра. Однако Жорж Леметр еще в 1927 году показал, что общая теория относительности позволяет интерпретировать разлет галактик как свидетельство расширения Вселенной. Четырьмя годами позже он имел смелость довести этот вывод до логического конца, выдвинув гипотезу, что Вселенная возникла из практически точечного зародыша, который он, за неимением лучшего термина, назвал атомом. Этот первородный атом мог пребывать в статичном состоянии любое время вплоть до бесконечности, однако его «взрыв» породил расширяющееся пространство, заполненное материей и излучением, которое за конечное время дало начало нынешней Вселенной. Уже в своей первой статье Леметр вывел полный аналог хаббловской формулы и, располагая известными к тому времени данными о скоростях и дистанциях ряда галактик, получил примерно такое же значение коэффициента пропорциональности между дистанциями и скоростями, что и Хаббл. Однако его статья была напечатана на французском языке в малоизвестном бельгийском журнале и поначалу осталась незамеченной. Большинству астрономов она стала известна лишь в 1931 году после публикации ее английского перевода.
Хаббловское время
Из этой работы Леметра и более поздних трудов как самого Хаббла, так и других космологов прямо следовало, что возраст Вселенной (естественно, отсчитанный от начального момента ее расширения) зависит от величины 1/H0, которую теперь называют хаббловским временем. Характер этой зависимости определяется конкретной моделью мироздания. Если считать, что мы живем в плоской Вселенной, заполненной гравитирующим веществом и излучением, то для вычисления ее возраста 1/H0 надо умножить на 2/3.
Тут-то и возникла загвоздка. Из измерений Хаббла и Хьюмасона вытекало, что численная величина 1/H0 приблизительно равна 1,8 млрд лет. Отсюда следовало, что Вселенная родилась 1,2 млрд лет назад, что явно противоречило даже сильно заниженным в то время оценкам возраста Земли. Из этого затруднения можно было выпутаться, предположив, что галактики разлетаются медленнее, чем считал Хаббл. Со временем это допущение подтвердилось, но проблемы так и не решило. Согласно данным, полученным к концу прошлого века с помощью оптической астрономии, 1/H0 составляет от 13 до 15 млрд лет. Так что расхождение все же оставалось, поскольку пространство Вселенной как считалось, так и считается плоским, а две трети хаббловского времени сильно меньше даже самых скромных оценок возраста Галактики.
Пустой мир
Согласно последним измерениям, нижняя граница хаббловского времени составляет 13,5 млрд. лет, а верхняя — 14 млрд. Получается, что нынешний возраст Вселенной примерно равен нынешнему хаббловскому времени. Такое равенство должно строго соблюдаться для абсолютно пустой Вселенной, где нет ни гравитирующей материи, ни антигравитирующих полей. Но ведь в нашем мире хватает и того, и другого. Дело в том, что пространство сначала расширялось с замедлением, потом скорость его расширения стала расти, и в нынешнюю эпоху эти противоположные тенденции почти скомпенсировали друг друга.
В общем виде это противоречие было устранено в 1998–1999 годах, когда две команды астрономов доказали, что последние 5–6 млрд лет космическое пространство расширяется не с падающей, а возрастающей скоростью. Это ускорение обычно объясняют тем, что в нашей Вселенной растет влияние антигравитационного фактора, так называемой темной энергии, плотность которой не изменяется со временем. Поскольку плотность гравитирующей материи падает по мере расширения Космоса, темная энергия все успешней конкурирует с тяготением. Продолжительность существования Вселенной с антигравитационной компонентой вовсе не обязана быть равной двум третям хаббловского времени. Поэтому открытие ускоряющегося расширения Вселенной (отмеченное в 2011 году Нобелевской премией) позволило устранить расстыковку между космологическими и астрономическими оценками времени ее жизни. Оно также стало прелюдией к разработке нового метода датировки ее рождения.
Космические ритмы
30 июня 2001 года NASA отправило в космос зонд Explorer 80, через два года переименованный в WMAP, Wilkinson Microwave Anisotropy Probe. Его аппаратура позволила регистрировать температурные флуктуации микроволнового реликтового излучения с угловым разрешением менее трех десятых градуса. Тогда уже было известно, что спектр этого излучения почти полностью совпадает со спектром идеального черного тела, нагретого до 2,725 К, а колебания его температуры при «крупнозернистых» измерениях с угловым разрешением в 10 градусов не превышают 0,000036 К. Однако на «мелкозернистой» шкале зонда WMAP амплитуды таких флуктуаций были в шесть раз больше (около 0,0002 К). Реликтовое излучение оказалось пятнистым, тесно испещренным чуть более и чуть менее нагретыми участками.
Флуктуации реликтового излучения порождены колебаниями плотности электронно-фотонного газа, который некогда заполнял космическое пространство. Она упала почти до нуля приблизительно через 380 000 лет после Большого взрыва, когда практически все свободные электроны соединились с ядрами водорода, гелия и лития и тем самым положили начало нейтральным атомам. Пока этого не произошло, в электронно-фотонном газе распространялись звуковые волны, на которые влияли гравитационные поля частиц темной материи. Эти волны, или, как говорят астрофизики, акустические осцилляции, наложили отпечаток на спектр реликтового излучения. Этот спектр можно расшифровать при помощи теоретического аппарата космологии и магнитной гидродинамики, что дает возможность по-новому оценить возраст Вселенной. Как показывают новейшие вычисления, его наиболее вероятная протяженность составляет 13,72 млрд лет. Она и считается сейчас стандартной оценкой времени жизни Вселенной. Если принять во внимание все возможные неточности, допуски и приближения, можно заключить, что, согласно результатам зонда WMAP, Вселенная существует от 13,5 до 14 млрд лет.
Таким образом, астрономы, оценивая возраст Вселенной тремя различными способами, получили вполне совместимые результаты. Поэтому теперь мы знаем (или, выражаясь осторожней, думаем, что знаем), когда возникло наше мироздание — во всяком случае, с точностью до нескольких сотен миллионов лет. Вероятно, потомки внесут решение этой вековой загадки в перечень самых замечательных достижений астрономии и астрофизики.
Источник