Солнце онлайн
Вспышки на Солнце
Текущее расстояние от Земли до Солнца (в километрах)
Магнитные бури
6.9K
На Солнце произошла вспышка M3-класса
5.7K
На Солнце произошла вспышка M1-класса
Позиции Солнца и Луны относительно горизонта с учетом вашего местоположения
Получен снимок падающей на Землю ступени китайской ракеты
NASA показало «танец» двух гигантских черных дыр
Астрономы сфотографировали пару «глаз», образованных сливающимися галактиками
Более 5 тысяч тонн межпланетной пыли ежегодно оседает на Землю
Опубликован новый снимок первой сфотографированной черной дыры
Астрономы сфотографировали поразительные структуры, создаваемые черной дырой
Посадка китайского ровера на поверхность Марса, вероятно, состоится 15 мая
Прямая трансляция запуска «Союз МС-18» к Международной космической станции
Раскрыты удивительные свойства межзвездной кометы 2I/Borisov
«Voyager 1» записал гул межзвездной среды
Опубликованы первые снимки с китайского марсохода «Zhurong»
Прямая трансляция запуска «Tianzhou-2» к китайской космической станции
Вспыхнувшая в созвездии Кассиопея звезда стала видна невооруженным глазом
Получен снимок ровера «Curiosity» с орбиты Марса
Прямая трансляция полета дрона «Ingenuity» на Марсе
На соседней звезде зарегистрирована мощнейшая вспышка
Прямая трансляция запуска миссии SpaceX «Crew-2» к Международной космической станции
На Солнце произошла вспышка M3-класса
Получен детальный снимок великолепной галактики со вспышкой звездообразования
Метеориты раскрыли состав первичных атмосфер каменистых планет
Астрономы заметили вращение у крупнейших структур во Вселенной
Дрон «Ingenuity» совершил второй полет на Марсе
Глобальное потепление увеличит число разрядов молний в Арктике вдвое
Ровер «Curiosity» раскрыл интригующие подробности климата древнего Марса
Текущее расстояние планет от Солнца и Земли и их видимость на небе с учетом местоположения
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
Расстояние от Солнца
Расстояние до Земли
© 2015-2021 Ин-Спейс. Все права защищены.
Использование всех текстовых материалов без изменений разрешается только с активной гиперссылкой на издание Ин-Спейс. Все аудиовизуальные произведения являются собственностью своих авторов и правообладателей и используются только в образовательных и информационных целях.
Сетевое издание Ин-Спейс зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор) 04 мая 2018 года. Свидетельство о регистрации Эл № ФС 77 — 72684.
Сайт может содержать контент, не предназначенный для лиц младше 18 лет.
Источник
МКС Онлайн
Солнце онлайн (SDO / SOHO)
Солнце самый главный источник света и тепла на нашей планете. В древние времена практически все религии и верования мира были пронизаны благоговением и почитанием этой звезды как божества. Современный человек уже не готов придавать столь сильное значение земному светилу, но фактически, спустя тысячи лет, Солнце не стало менее значимым, ни для человечества, ни для других живых организмов на Земле.
Однако, по мере того как угасал божественный интерес к Солнцу, интерес научный только возрастал. Явления, происходящие на этой звезде, все больше и больше притягивали и продолжают притягивать к себе внимание ученых космических агентств и обсерваторий. Так, например, на Солнце время от времени происходят взрывные процессы выделения энергии, так называемые – солнечные вспышки, способные влиять на жизненно важные процессы на Земле.
Обсерватория солнечной динамики под руководством NASA (Solar Dynamics Observatory, SDO) и установленное на ней оборудование позволяют нам получать изображения Солнца размерами 4096*4096 пикселей, что дает уникальную возможность вести наблюдение за поверхностью Солнца с угловым размером 0,6 секунды.
Аппарат передает снимки каждые 12 секунд, на основании которых составляются анимационные изображения. Объем данных, которые ученые получают на Земле, в сутки составляет порядка 3 терабайт.
Предлагаем Вам весь спектр изображений, которые передает спутник SDO. Анимированные фотографии обновляются ежедневно. Для просмотра анимации кликните по изображению.
SDO
Длина волны: 171 ангстрем (0,0000000171 м). Характерная температура: 999726,85 С (1000000 K 180000 F)
Длина волны: 193 ангстрем (0,0000000193 м). Характерная температура: 1249726,85 С (1250000 K 2250000 F)
Длина волны: 211 ангстрем (0,0000000211 м). Характерная температура: 1999726,85 С (2000000 K 3600000 F)
Длина волны: 304 ангстрем (0,0000000304 м). Характерная температура: 49726,85 С (50000 K 90000 F)
Длина волны:131 ангстрем (0,0000000131 м). Характерная температура: 9999726,85 С (10000000 K 18000000 F)
Длина волны: 335 ангстрем (0,0000000335 м). Характерная температура: 2799726,85 С (2800000 K 5000000 F)
Благодаря ультрафиолетовому телескопу EIT, установленному на спутнике SOHO у нас есть возможность получать фотографии Солнца через призму ультрафиолетовых фильтров с разным диапазоном. Подобная технология позволяет наблюдать процессы, возникающие на поверхности звезды, в том числе солнечные вспышки. А спектрометрический хронограф блокирует мощное излучение нашего светила полностью, позволяя создавать искусственное затмение и получать детальные фотографии солнечной короны.
Источник
Наблюдение за солнцем — Обсерватория SDO — Солнце онлайн
SDO — Обсерватория солнечной динамики (Solar Dynamics Observatory) — космическая обсерватория НАСА для изучения Солнца.
Спутник SDO является новейшей солнечной обсерваторией НАСА, выведенной в космос в декабре 2010 года. Спутник оснащен тремя современными приборами, непрерывно наблюдающими Солнце с околоземной орбиты: HMI (Гелиосейсмический магнетометр), EVE (Спектрометр крайнего УФ диапазона), AIA (Ансамбль солнечных телескопов). SDO на орбите с 11 февраля 2010 года.
Обновление изображений происходит не менее одного раза в 30 минут в течении 24 часов в сутки. Спутник получает и передает на Землю рекордные по детализации снимки Солнца. На фотоснимках SDO на Солнце различаются детали размером меньше 400 км.
Изображения в реальном времени, передаваемые спутниковой обсерваторией — «SDO» с установленного на нем ультрафиолетового телескопа
sdo.gsfc.nasa.gov
Солнце — единственная звезда Солнечной системы — ☉
Солнечные вспышки и корональные выбросы являются независимыми процессами. Выброс включает в себя плазму, состоящую в основном из электронов и протонов наряду с небольшим количеством более тяжёлых элементов — гелия, кислорода, железа и других. Вспышки на Солнце делятся на пять классов в зависимости от мощности рентгеновского излучения: A, B, C, M, X. Минимальный класс A (0.0) соответствует мощности излучения на орбите Земли в 10 нановатт на квадратный метр. При переходе к следующей букве мощность увеличивается в десять раз.
Вокруг Солнца обращаются другие объекты солнечной системы: планеты и их спутники, карликовые планеты и их спутники, метеориты, астероиды, кометы и космическая пыль.
Пятна на Солнце
Солнечные пятна — большие области темного цвета на Солнце. Температура на пятнах сильно понижена по сравнению с другими участками фотосферы примерно на 1500 kelvin . Наблюдать пятна можно с помощью оптических приборов.
Пятна на Солнце это области выхода сильных магнитных полей. Потемнение происходит путем подавления магнитным полем конвективных движений вещества. Главный показатель солнечной активности это количество пятен.
Солнечный ветер — Непрерывный поток супер-ионизированных частиц, плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрич. расстояний
100 а.е. Солнечный ветер образуется при газодинамическом расширении солнечной короны в межпланетное пространство.
ВСЕЛЕННАЯ В ПОЭЗИИ
«Тебя зовут божественною, Мира,
Царицею в созвездии Кита…»
Интересно
Статьи
In order to provide you with the best online experience this website uses cookies.
By using our website, you agree to our use of cookies. Learn more
Information cookies
Cookies are short reports that are sent and stored on the hard drive of the user’s computer through your browser when it connects to a web. Cookies can be used to collect and store user data while connected to provide you the requested services and sometimes tend not to keep. Cookies can be themselves or others.
There are several types of cookies:
- Technical cookies that facilitate user navigation and use of the various options or services offered by the web as identify the session, allow access to certain areas, facilitate orders, purchases, filling out forms, registration, security, facilitating functionalities (videos, social networks, etc..).
- Customization cookies that allow users to access services according to their preferences (language, browser, configuration, etc..).
- Analytical cookies which allow anonymous analysis of the behavior of web users and allow to measure user activity and develop navigation profiles in order to improve the websites.
So when you access our website, in compliance with Article 22 of Law 34/2002 of the Information Society Services, in the analytical cookies treatment, we have requested your consent to their use. All of this is to improve our services. We use Google Analytics to collect anonymous statistical information such as the number of visitors to our site. Cookies added by Google Analytics are governed by the privacy policies of Google Analytics. If you want you can disable cookies from Google Analytics.
However, please note that you can enable or disable cookies by following the instructions of your browser.
Источник
Журнал «Все о Космосе»
Аппараты следящие за Солнцем
Не смотря на то что Солнце является, пожалуй, самым важным для нас объектом Солнечной системы (после Земли конечно) число зондов, направленных на его исследование уступает таковому же числу для Венеры и Марса. Однако с учётом того что значительная часть аппаратов, отправленных к Венере и Марсу были потеряны, а среднее время их работы не превышало пары лет (против десятилетий у множества аппаратов, исследующих Солнце) — ситуация в показателе исследовательских аппарато-лет оказывается всё-таки в пользу Солнца.
Луна-1 — запущенна 2 января 1959 года. Несмотря на то что основная цель (попадание в Луну) не удалась, её миссия была весьма успешна. Одним из достижений этого аппарата является первое в истории прямое наблюдение характеристик солнечного ветра.
Пионер-5 — произвёл первые измерения межпланетного магнитного поля, уровня радиации и свойств солнечных вспышек. Не смотря на быстрый выход из строя (он проработал на орбите с 11 марта до 30 апреля 1960 года) этот крохотный спутник весом в 45 кг при диаметре в 66 см считается самым успешным из всей серии спутников «Пионер».
Спутники серии «Орбитальная солнечная обсерватория» (Orbiting Solar Observatory) — это 8 последовательно запускавшихся аппарата направленных для изучения 11-летних циклов Солнца в ультрафиолетовых и рентгеновских лучах. С запуска первой обсерватории 7 марта 1962 и до окончания работы последней из них в октябре 1978 года обычно на орбите находилось по 2-3 аппарата этой серии. Ориентация аппаратов на Солнце осуществлялась вращением.
С вторым аппаратом связана серьёзная авария: 14 апреля 1964 на тестах интеграции аппарата с третьей твердотопливной ступенью ракеты Дельта-С один из техников случайно поджёг её разрядом статического электричества, при этом происшествии сгорело трое человек, а сам же аппарат срикошетив от крыши упал в углу здания. Потребовалось 10 месяцев на его восстановление, после чего он всё-таки был запущен 3 февраля 1965 года.
Третий аппарат и вовсе пришлось изготавливать в двух экземплярах, так как модификации в третьей ступени Дельта-С (сделанные после предыдущего случая) привели к её преждевременному запуску в полёте, а сам аппарат сгорел в плотных слоях атмосферы. Несмотря на это новый «третий» аппарат смог установить равномерность гамма-излучения по всему небу, а также обнаружил рентгеновские вспышки от объекта Scorpius X-1. Шестой аппарат одним из первых зафиксировал гамма-всплески, седьмой обнаружил гамма-лучи в солнечных вспышках, а восьмой обнаружил линии железа в скоплениях галактик.
Аппараты серии Пионер-6-9 (их запуски производились с 16 декабря 1965 по 8 ноября 1968) — эти автоматические межпланетные станции проводили долговременное измерение космической погоды, солнечного ветра и космических лучей. Их можно отнести к первым «долгосрочным» научным миссиям — последняя связь с аппаратом Пионер-6 была установлена 8 декабря 2000 года (в честь его 35-летия).
Предположительно за исключением Пионера-9 вышедшего из строя в 1983 году, они все ещё функциональны. Основная причина отказа от дальнейшего их использования — это архаичность приборов (возможности которых перекрывали новые спутники) и средств связи (требовавших огромных тарелок при скорости связи в 512 бит\сек).
Пара аппаратов серии Helios (запуск 10 декабря 1974 и 15 января 1976) — совместная разработка NASA и DFVLR (тогда ещё в составе ФРГ). Ими изучалась межпланетная среда включая исследования космической пыли, космических лучей, межпланетного магнитного поля. С помощью них также впервые были обнаружены ионы гелия в солнечном ветре.
Для более подробного исследования Солнца они были отправлены на гелиоцентрическую орбиту с перигелием в 0,3 астрономических единиц (до них так близко к Солнцу из АМС никто не подбирался). Аппаратам удалось обнаружить «магнитные облака» из плазмы (вместе с другим спутником — SMM), однако связать их происхождение с корональными выбросами массы в тот момент не получилось.
Международный исследователь комет — запущенный 12 августа 1978 года стал первым аппаратом запущенным на орбите Лиссажу, на которой он вращается вокруг точки L1 находящейся между Землёй и Солнцем. Аппарат имеет три детектора космических лучей различных энергий, детекторы протонов и магнитных полей, волн в плазме и рентгеновских лучей. Закончив 10 июня 1982 года свою основную миссию по изучению солнечно-земных связей, солнечного ветра и космических лучей, он был направлен на изучения кометы Джакобини-Циннера, хвост которой он прошёл 11 сентября 1985 года.
5 мая 1997 года аппарат был отправлен NASA на «пенсию» с отключением всех научных приборов. В 1999 и 2008 годах NASA осуществляло проверку его состояния. В апреле 2014 года на краудфайдинговой платформе RocketHub появился проект по восстановления связи с этим аппаратом, который собрал почти 160 тыс. $. Уже 29 мая 2014 года этой команде удалось установить связь с аппаратом (с разрешения NASA конечно). А 2 июля они попытались запустить его двигатели впервые с 1987 года, но это не удалось из-за недостатка азота для наддува баков. Команда продолжила работать с научными приборами вплоть до 16 сентября, когда контакт с аппаратом был потерян. Предположительно это произошло из-за снижения выделения энергии солнечными батареями, так как аппарат пролетал в этот момент мимо Земли улетая от Солнца (так связь с аппаратом уже терялась в 1981 году). Следующая встреча аппарата с Землёй должна произойти в 2031 году.
Вояджер-1 и 2 — хотя основная цель эти аппаратов и заключалась в исследование внешних планет Солнечной системы, они также внесли вклад и в исследование Солнца: с помощью них были уточнены свойства солнечного ветра на различном удалении от Солнца, скорости распространения корональных выбросов вещества и расположение головной ударной волны Солнечной системы (места где солнечный ветер сталкивается с межзвёздной средой).
Solar Maximum Mission (также известный как SolarMax или просто SMM) был запущен 14 февраля 1980 года для изучения солнечных явлений. Уже к 21 июня ему удалось обнаружить нейтроны образующиеся во время солнечной вспышки (это довольно редкое событие и регистрируется в среднем раз в год) и также быстро выйти из строя — уже в ноябре. Аппарат потерял ориентацию на Солнце и провёл в этом состоянии до апреля 1984 года, когда миссия «Спейс Шаттла» STS-41-C не починила его.
Поймать спутник для ремонта получилось не сразу: в начале это пытались сделать с помощью пилотируемого маневрового модуля (MMU, к сожалению после катастрофы «Челленджера» от использования его и вовсе отказались), затем попытались воспользоваться манипулятором Canadarm. В итоге состыковаться удалось только на следующий день после выдачи аппарату сигналов с земли и снижения частоты его вращения.
Вся миссия Шаттла в конечном счёте прошла успешно и систему ориентации спутника с одним из научных приборов удалось починить, а также сделать его фотографию представленную выше. Не смотря на такую альтернативную эмблему миссии (обозначающую дату посадки, произведённую в пятницу 13-е) SMM проработал до входа в атмосферу 2 декабря 1989 года, попутно открыв несколько околосолнечных комет.
Также аппарату удалось установить что во время солнечного максимума (когда число солнечных пятен резко увеличивается) светимость Солнца не падает, а наоборот увеличивается — это связано с наличием вокруг пятна солнечных факелов которые наоборот имеют увеличенную светимость.
АМС «Улисс» — запущенный 6 октября 1990 года совместный проект ESA и NASA. Это был первый аппарат, запущенный под большим углом к плоскости эклиптики Солнечной системы. В его задачи входило изучение полюсов Солнца и немного Юпитера (в ходе гравитационного манёврова по выходу на требуемую орбиту и пролёте мимо в 2004 году). Аппарат смог установить что южный полюс Солнца не имеет фиксированного положения (впрочем как и северный), а пройдя сквозь хвосты нескольких комет ему удалось установить что их длинна может простираться на несколько астрономических единиц в длину.
Но у всего есть своя цена, так и Улисс выводимый как основная нагрузка Спейс шаттла «Дискавери» (имеющего грузоподъёмность 24,4 тонны на НОО) и разгоняемый двумя дополнительными ступенями, имел общую массу всего 365 кг из которых только 55 кг приходилось на научную аппаратуру. В связи с этим аппарат имел весьма ограниченный набор приборов: детекторы ионов и электронов, космической пыли и лучей. В этот список не входило никаких камер, так что мы до сих пор не имеем никаких фотографий полюсов Солнца.
Так как АМС «Улисс» в ходе выведения на орбиту приходилось отдаляться аж до Юпитера, то в качестве источника питания на нём использовался РИТЭГ, а так как масса аппарата была сильно ограничена — то мощность его была весьма невелика. Так снижение мощности РИТЭГа привело к тому что даже 70-метровые тарелки сети дальней космической связи NASA в конце жизни аппарата стали терять его сигнал, а в 2008 году снижение его мощности вовсе вызвало замерзание топлива (гидразина), аппарат не смог маневрировать и был потерян (правда проработав к тому времени уже 17 лет и в 4 раза превысив расчётный срок эксплуатации).
Solar-A и Solar-B — аппараты которые после запуска получили более благозвучные имена «Yohkoh» (Солнечный луч) и «Hinode» (Восход Солнца). Это совместный проект Японии, Великобритании и США. Аппараты по этому проекту были запущены 30 августа 1991 года (проработал до 14 декабря 2001) и 23 сентября 2006 года (всё ещё продолжает работать).
«Солнечный луч» впервые имел ПЗС-матрицу среди космических рентгеновских телескопов, а также имел ещё один рентгеновский телескоп более жёсткого спектра и пару спектрометров для поиска ионов железа, серы и кальция. «Восход Солнца» получил 0,5 метровый оптический и рентгеновский телескоп, а также ультрафиолетовый спектрометр.
Основной целью работы обоих аппаратов было изучение магнитного поля Солнца посредством различных его проявлений. Второму аппарату удалось обнаружить альфвеновские волны на Солнце, а также найти прямое доказательство того что магнитное пересоединение является источником солнечных вспышек.
Серия аппаратов Коронас — совместный проект Роскосмоса и РАН (а ранее также Украины), предусматривавший исследование Солнца в ходе одного 11-летнего цикла. Программа исследований должна была осуществляться посредством последовательного запуска 3 аппаратов: Коронас-И, Коронас-Ф и Коронас-Фотон. У аппаратов был широкий спектр задач: исследование различных проявлений солнечной погоды, сейсмологические исследования внутреннего строения Солнца, изучение взаимодействия активных явлений на Солнце с выбросами заряженных частиц и их взаимодействие уже с верхними слоями атмосферы.
Для этого на аппаратах были установлены приёмники практически всего спектра электромагнитного излучения: от радио до гамма. В создании приборов для него участвовали Россия, Украина, Индия и Польша. Проблемы с финансированием вынудили сместить даты запусков, но надёжная работа первых двух аппаратов позволила практически нивелировать последствия этого: Коронас-И запущенный 2 марта 1994 года проработал до марта 2001, а Коронас-Ф запущенный 31 июля 2001 года сошёл с орбиты в декабре 2005 года (меньший срок службы второго аппарата был вызван влиянием солнечного максимума на атмосферу Земли и следовательно более быстрым торможением аппарата на низкой орбите, которая в случае обоих аппаратов составляла около 550 км).
Однако третьему аппарату (Коронас-Фотон) запущенному 30 января 2009 года повезло меньше: он смог проработать только 278 дней после чего вышел из строя из-за сбоев в работе платформы «Метеор» (хотя все научные приборы продолжали действовать). В ходе работы Коронас-Фотон было собрано 380 Гбайт научной информации.
WIND был предназначенный для изучения солнечного ветра. Хотя он был запущен 1 ноября 1994 года до следующего в этом списке аппарата, но из-за желания учёных подробнее изучить магнитное поле Земли и окружающую Луну среду он присоединился к нему в точке Лагранжа L1 только спустя 10 лет. WIND имеет 2,4 м в диаметре при высоте 1,8 м и сухом весе в 895 кг, при этом стабилизация аппарата вращением позволило установить на нём 2 «коротких» магнетометра в 12 и 15 м длинной, и один длинный 100-метровый магнетометр регулируемой длинны из проволоки. На аппарате также стоят детекторы ионов и электронов двух диапазонов энергий и два гамма-спектрометра, один из которых был отключен из-за исчерпания запасов, а другой (произведённый ФТИ РАН) продолжает работать, как и сам аппарат до сих пор. За это время WIND стал источником для 4300 научных публикаций. Остатков от 300 кг топлива аппарату должно хватить ещё на 50 лет нахождения в точке L1.
SOHO — совместный проект NASA и ESA запущенный ещё 2 декабря 1995 года, который продолжает свою работу до сих пор. На его борту находится целых 12 приборов некоторые из которых остаются уникальными и поныне (правда другую часть уже была отключена в связи с выводом на орбиту более нового SDO)
SOHO имеет весьма уникальную и интересную историю: изначально миссия аппарата рассчитывалась на два года, но приступив к работе в мае 1996 года уже 24 июня 1998 года связь с аппаратом была потеряна в ходе плановых калибровок гироскопов (аппарат потерял ориентацию на Солнце, которую не смог самостоятельно восстановить).
Так как аппарат был весьма ценен и терять его совершенно не хотелось, специалисты ESA тут же отправились в США для того чтобы иметь возможность кроме своих тарелок воспользоваться помощью Сети дальней космической связи НАСА. Однако целый месяц ежедневных попыток связи с аппаратом результатов не дал, и специалисты пошли практически на беспрецедентный шаг: используя одновременно 305-метровый радиотелескоп в Аресибо на передачу и 70-метровый Голдстоунский телескоп на приём, они в течении более часа пытались установить текущее положение SOHO. В ходе этого аппарат был обнаружен вблизи ожидаемой позиции, но данные свидетельствовали о том, что он вращается со скоростью 1 оборот в 53 секунды с солнечными батареями потерявшими ориентацию на Солнце.
Только к 3 августа, когда ориентация солнечных батарей частично восстановилась и аккумуляторы аппарата начали заряжаться, от него был получен короткий сигнал в несколько секунд длинной. После зарядки обоих батарей 12 августа SOHO была подана команда на включения нагревателей баков с гидразином, который к тому моменту уже полностью замёрз. Несколько раз процесс разогрева приходилось приостанавливать так как телеметрия показывала, что аккумуляторы начинали разряжаться (ориентация солнечных батарей была не точной и потребности нагревателей в энергии они не покрывали, а «спасательная команда» SOHO не хотела рисковать снижая заряд батарей). После процесса разогрева баков топлива и топливных трубопроводов SOHO снова был сориентирован на Солнце 16 сентября. Затем началось постепенное восстановление работоспособности приборов: SUMER – был запущен первым 7 октября, COSTEP и ERNE включены 9-го числа, UVCS — 10-го, MDI — 12-го, LASCO и EIT — 13-го, CDS и SWAN — 17-го, и только 23-го октября с запуском последнего прибора (CELIAS) аппарат полностью восстановил свою функциональность.
Однако это был не конец его приключений: после восстановления работоспособности научных приборов оказалось что только 1 из 3-х гироскопов аппарата продолжает работать, а 21 декабря вышел из строя и оставшийся гироскоп. ESA пришлось разработать для SOHO новую программу работы, для того чтобы он мог продолжать работать не расходуя остатки драгоценного топлива. Перепрограммирование аппарата было осуществлено 1 февраля 1999 года.
Не смотря на такое начало ужасное начало, аппарат продолжает работать уже без существенных сбоев. Но любое оборудование в конце концов устаревает, и с выводом на орбиту SDO в начале 2010 года часть приборов SOHO, имеющих общие с ним задачи, начали постепенно отключать: уже в июле 2010 года прибор EIT был переведён в ограниченный режим и делает только два набора снимков в сутки (ради сохранения непрерывного ряда наблюдений), с 12 апреля 2011 года был отключен прибор MDI, 23 явнаря 2013 года — UVCS, 8 августа 2014 года — SUMER, а 5 сентября — CDS.
Кроме своей основной миссии SOHO при помощи добровольцев помог открыть 2 тысячи комет к 26 декабря 2010 года, а к 13 сентября 2015-го их число перевалило уже за 3 тысячи — таким образом с помощью SDO было открыто более половины от всех известных на данный момент комет.
Advanced Composition Explorer — это аппарат запущенный 25 августа 1997 года для изучения высокоэнергетических частиц солнечного ветра и межпланетной среды. На данный момент ACE служит в основном для уточнения прогнозов по магнитным бурям за полчаса-час до их прихода, благодаря его положению в точке Лагранжа L1 в 1,5 млн. км от Земли на линии Земля-Солнце. Расположение этой точке также позволяет ему значительно экономить топливо: 15 августа будет исполняться 20 лет с момента его запуска, а остатков топлива у него составляет примерно 37 кг, чего ему должно хватить ещё до 2026 года.
TRACE — это небольшой телескоп с апертурой в 30 см запущенный 2 апреля 1998 года как часть проекта «Малые исследовательские программы» (SMEX) NASA предусматривающую проекты дешевле 120 млн $. Аппарат осуществлял съёмку участков Солнца в 8,5 угловых минут (примерно 14 часть его общей площади) с помощью ПЗС-матрицы разрешением 1000×1000 пикселей в диапазоне от видимого до дальнего ультрафиолета. С 20 апреля 1998 года до 2010-го года он осуществлял поиск связей магнитных полей с плазменной структурой в атмосфере Солнца (фотосфере, хромосфере и короне).
«Солнечный спектрограф высоких энергий имени Реувена Рамати» или RHESI — обсерватория рентгеновского и гамма спектра, направленная на изучение солнечных вспышек, которая была запущенна 5 февраля 2002 года по программе SMEX. Ей впервые удалось заснять гамма-излучение от вспышки и определить то что частота таких гамма-всплесков чаще, чем ранее предполагалось. RHESI продолжает работать до сих пор, а с помощью его данных уже написано 774 научные статьи.
«Исследователь межзвёздных границ» или IBEX — это крохотный спутник весом всего 80 кг запущенный с самолёта на ракете «Пегас» 19 октября 2008 года как часть программы SMEX. Он имеет два детектора нейтральных частиц высоких и низких энергий которые предназначены для измерения пределов гелиосферы Солнца. В конце своей основной 2-летней миссии спутнику удалось уточнить скорость движения нашей Солнечной системы относительно межзвёздной среды (скорость по измерениям составила 23,2 км/с относительно измеренных ранее с помощью АМС «Улисс» 26,3 км/с). А в конце своей расширенной миссии IBEX обнаружил плазменный хвост у Солнечной системы. Спутник продолжает работать до сих пор, скорость связи с ним составляет всего 16 кбит/с.
Пара аппаратов STEREO-A и B запущенных в 2006 году имеют в своём составе 4 набора инструментов: SECCHI — для исследования короны и гелиосферы (одна камера дальнего ультрафиолетового спектра и по две пары коронографов и камер для съёмки солнечного ветра); IMPACT — детекторы частиц коронарных выбросов; PLASTIC — детекторы протонов, альфа-частиц и тяжёлых ионов; SWAVES — антенна для измерения возмущений в радиодиапазоне по направлению Солнце-Земля.
Основной задачей этих аппаратов является построение 3D-моделей корональных выбросов массы, что было очень важно для построения модели их образования (дело в том что солнечные вспышки и коронарные выбросы всегда снимаются разными камерами, из-за чего на 2D-снимках их было очень сложно связать между собой). Для осуществления своей задачи они были отправлены на орбиты во круг Солнца с таким расчётом чтобы один аппарат немного обгонял Землю, а другой немного отставал от неё. Таким образом они получали картинку из двух равноотстоящих от Земли точек которые постепенно отдалялись. С середины 2011 года их отдаление от Земли позволило получать полную картину Солнца (до тех пор, пока аппарат STEREO-B не потерял ориентацию 1 октября 2014)
Так как аппараты в процессе работы должны были отдаляться далеко от Земли (до 2 а.е.) для связи они используют направленные антенны, которые должны быть точно направлены на Землю. Проблемы со STEREO-B случились в ходе плановых тестов, имитирующих потерю связи аппаратов в процессе прохождения их за Солнцем (такие же проблемы испытывают марсоходы и спутники на орбите Марса которые теряют связь с Землёй на пару недель когда Марс заходит за Солнце).
Связь с аппаратом временно восстановилась 21 августа 2016, но из-за слишком быстрого вращения восстановить его ориентацию на Землю не удалось так как момента вращения маховиков для полной остановки вращения было недостаточно, а времени для разморозки баков с горючим до новой потери связи у ЦУПа не было. К сожалению следующая возможность наладить с ним связь появится только в 2022 году (когда его антенна снова окажется направлена на Землю). Команда миссии учла ошибку и STEREO-A без проблем пережил прохождение соединения с Солнцем в течении нескольких месяцев в 2015 году и продолжает работать до сих пор в штатном режиме.
Обсерватория солнечной динамики (SDO) была запущенна на орбиту 11 февраля 2010 года ракетой Атлас-5 с двигателем РД-180, после чего заняла свою позицию на геосинхронной орбите. Эта обсерватория имеет на своём борту магнетометр и 11 камер различных диапазонов снимающих всю поверхность Солнца с интервалом в 12 секунд и разрешением 4096×4096 пикселей, что даёт поток данных около 1,5 терабайт данных в сутки.
Столь большой поток данных потребовал особых усилий для его поддержания: аппарат имеет две остронаправленных антенны для передачи данных и одну отдельную для телеметрии. Наземное оборудование состоит из двух 18-метровых антенн, предназначенных исключительно для связи с SDO. Такая система позволяет иметь суммарный канал в 130 Мбит/с при работе сразу двух антенн.
Аппарат имеет собственный сайт, на котором можно увидеть фотографии Солнца в режиме реального времени. А каждый год, примерно в «день рождения» SDO Центр космических полётов Годдарта выкладывает видео составленное из фотографий, сделанных им за это время: 1 год, 2 год, 3 год, 4 год, 5 год, 6 год, 7 год.
Источник