Меню

Становления вселенной от начала времен до наших дней

Происхождение Вселенной: 7 различных теорий

Как появилась Вселенная, которую мы знаем? И как мы объясним ее происхождение? Несомненно, все остальные свидетельства и данные, собранные за эти годы космологами, указывают на то, что все это могло начаться с «большого взрыва». Но что, если есть еще?

В 1927 году бельгийский астроном Жорж Леметр стал первым, кто предложил теорию расширяющейся Вселенной (позже подтвержденную Эдвином Хабблом). Он предположил, что расширяющаяся Вселенная может быть прослежена до особой точки, которую он назвал «первичным атомом», назад во времени. Это заложило основу современной теории Большого Взрыва.

Что такое теория большого взрыва?

Теория Большого взрыва — это объяснение, основанное в основном на математических моделях, того, как и когда возникла Вселенная.

Космологическая модель Вселенной, описанная в теории Большого взрыва, объясняет, как она первоначально расширилась из состояния бесконечной плотности и температуры, известного как изначальная (или гравитационная) сингулярность. За этим расширением последовала космическая инфляция и резкое падение температуры. Во время этой фазы Вселенная раздувалась с гораздо большей скоростью, чем скорость света (в 10 26 раз).

Впоследствии Вселенная была разогрета до такой степени, что элементарные частицы (кварки, лептоны и так далее) до постепенного понижения температуры (и плотности) привели к образованию первых протонов и нейтронов.

Через несколько минут после расширения протоны и нейтроны объединяются, образуя первичные ядра водорода и гелия-4. Предполагаемый радиус наблюдаемой Вселенной в течение этой фазы составлял 300 световых лет. Первые звезды и галактики появились примерно через 400 миллионов лет после этого события.

Важнейшим элементом модели Большого Взрыва является космическое сверхвысокочастотное фоновое излучение (Реликтовое излучение), представляющий собой электромагнитное излучение, оставшееся со времен зарождения Вселенной. Реликтовое излучение остается самым убедительным доказательством большого взрыва.

Хотя теория остается широко признанной во всем научном спектре, несколько альтернативных объяснений — таких, как стационарная Вселенная и вечная инфляция, приобрели привлекательность с годами.

7. Теория вечной инфляции

Понятие инфляции было введено космологом Аланом Гутом в 1979 году, чтобы объяснить, почему Вселенная плоская, чего не хватало в первоначальной теории Большого взрыва.

Хотя идея Гута об инфляции объясняет плоскую Вселенную, она создала сценарий, который не позволяет Вселенной избежать этой инфляции. Если бы это было так, не произошло бы повторного нагрева Вселенной, равно как и образования звезд и галактик.

Эта конкретная проблема была решена Андреасом Альбрехтом и Полем Штайнхардтом в их «новой инфляции». Они утверждали, что быстрое расширение Вселенной произошло всего за несколько секунд, прежде чем прекратиться. Он продемонстрировал, как Вселенная может быстро раздуваться и при этом нагреваться.

Концепция «вечной инфляции», или теория хаотической инфляции, была введена Андреем Линде, профессором Стэнфордского университета. Он был основан на предыдущих работах Штейнхардта и Александра Виленкина.

Теория утверждает, что инфляционная фаза Вселенной продолжается вечно; это не конец для Вселенной в целом. Другими словами, космическая инфляция продолжается в одних частях Вселенной и прекращается в других. Это приводит к сценарию мультивселенной, в котором пространство разбивается на пузыри. Это как вселенная внутри вселенной.

В мультивселенной в разных вселенных могут действовать разные законы природы, физики. Итак, вместо единого расширяющегося космоса наша Вселенная могла бы быть инфляционной мультивселенной с множеством маленьких вселенных с различными свойствами.

Однако Пол Стейнхардт считает, что его теория «новой инфляции» ни к чему не приводит и не предсказывает, и утверждает, что понятие мультивселенной является «фатальным недостатком» и неестественным.

6. Конформная циклическая модель

Роджер Пенроуз, 6 ноября 2005 года

Модель конформной циклической космологии (англ. conformal cyclic cosmology или CCC) предполагает, что Вселенная проходит через повторяющиеся циклы большого взрыва и последующих расширений. Общая идея состоит в том, что «большой взрыв» был не началом Вселенной, а скорее переходной фазой. Его разработал физик-теоретик и математик Роджер Пенроуз.

В качестве основы для своей модели Пенроуз использовал множественные метрические последовательности FLRW (Фридмана – Лемэтра – Робертсона – Уокера). Он утверждал, что конформная граница одной последовательности FLRW может быть присоединена к границе другой.

Метрика FLRW — это наиболее близкое приближение к природе Вселенной и часть модели Лямбда-CDM. Каждая последовательность начинается с большого взрыва, за которым следует инфляция и последующее расширение.

Циклическая или осциллирующая модель, в которой Вселенная повторяется снова и снова в неопределенном цикле, впервые оказалась в центре внимания в 1930-х годах, когда Альберт Эйнштейн исследовал идею «вечной» Вселенной. Он считал, что по достижении определенной точки Вселенная начинает коллапсировать и заканчивается Большим хрустом перед тем, как пройти через Большой отскок.

Читайте также:  Когда найдут конец вселенной

Прямо сейчас существует четыре различных варианта циклической модели Вселенной, одна из которых — конформная циклическая космология.

5. Мираж четырехмерной черной дыры

Исследование, проведенное группой исследователей в 2013 году, предположило, что наша Вселенная могла возникнуть из обломков, выброшенных из коллапсировавшей четырехмерной звезды или черной дыры.

По мнению космологов, участвовавших в исследовании, одно из ограничений теории Большого взрыва — объяснение температурного равновесия, обнаруженного во Вселенной.

Хотя большинство ученых согласны с тем, что инфляционная теория дает адекватное объяснение того, как маленький участок с однородной температурой быстро расширится и превратится во Вселенную, которую мы наблюдаем сегодня, группа сочла это неправдоподобным в силу хаотичной природы Большого взрыва.

Для решения этой проблемы команда предложила модель космоса, в которой наша трехмерная Вселенная является мембраной и плавает внутри четырехмерной «объемной вселенной». Они утверждали, что если в четырехмерной «объемной вселенной» есть четырехмерные звезды, то, скорее всего, они обрушатся в четырехмерные черные дыры. Эти четырехмерные черные дыры будут иметь трехмерный горизонт событий (точно так же, как трехмерные имеют двухмерный горизонт событий), который они назвали «гиперсферой».

Когда команда смоделировала коллапс 4-D звезды, они обнаружили, что выброшенные обломки умирающей звезды, скорее всего, образуют 3-D мембрану вокруг этого 3-мерного горизонта событий. Наша Вселенная могла бы быть одной из таких мембран.

Модель «четырехмерной черной дыры» космоса действительно объясняет, почему температура во Вселенной почти равномерна. Она также может дать ценную информацию о том, что именно спровоцировало космическую инфляцию через несколько секунд после ее возникновения. Однако недавнее наблюдение, проведенное спутником Planck ЕКА, выявило небольшие вариации температуры космического микроволнового фона (CMB). Эти спутниковые показания отличаются от предложенной модели примерно на четыре процента.

4. Теория плазменной Вселенной

На наше нынешнее понимание Вселенной в основном влияет гравитация, в частности Общая теория относительности Эйнштейна, с помощью которой космологи объясняют природу Вселенной. По совпадению, как и большинство других вещей, ученые на протяжении многих лет рассматривали альтернативу гравитации.

Космология плазмы (или теория плазменной Вселенной) предполагает, что электромагнитные силы и плазма играют очень важную роль во Вселенной вместо гравитации. Хотя у этого подхода много разных вариантов, основная идея остается той же; каждое астрономическое тело, включая Солнце, звезды и галактики, является результатом какого-либо электрического процесса.

Первая выдающаяся теория плазменной Вселенной была предложена лауреатом Нобелевской премии Ханнесом Альвеном в конце 1960-х годов. Позже к нему присоединился шведский физик-теоретик Оскар Клейн для разработки модели Альфвена – Клейна.

Модель построена на предположении, что Вселенная поддерживает равные количества материи и антивещества (это не так, согласно современной физике элементарных частиц). Границы этих двух областей отмечены космическими электромагнитными полями. Таким образом, взаимодействие между ними приведет к образованию плазмы, которую Альфвен назвал «амбиплазмой».

Согласно теории, такая плазма должна образовывать большие участки вещества и антивещества по всей Вселенной. Кроме того, было высказано предположение, что наше текущее местоположение в космосе должно быть в той части, где материи гораздо больше, чем антивещества, — таким образом решается проблема асимметрии материи и антивещества.

3. Теория медленного замораживания

Десятилетия математического моделирования и исследований привели космологов к обоснованному выводу, что наша Вселенная возникла из одной точки с бесконечной плотностью и температурой, называемой сингулярностью. Последующее расширение Космоса позволило ему остыть, что привело к образованию галактик, звезд и других астрономических объектов.
Однако, как мы знаем, стандартная модель Большого взрыва не осталась незамеченной, и одна из таких сложных теорий была предложена Кристофом Веттерихом, профессором Гейдельбергского университета в Германии.

Веттерих утверждал, что Вселенная, которую мы знаем сегодня, на самом деле могла начаться как холодная и разреженная, пробудившаяся от долгого замораживания. Со временем фундаментальные частицы в ранней Вселенной стали тяжелее, а гравитационная постоянная уменьшилась.

Кроме того, он объяснил, что если массы частиц увеличиваются, излучение из ранней Вселенной может заставить пространство казаться более горячим и удаляться друг от друга, даже если это не так.

Основная идея космической модели Медленного Замораживания Веттериха состоит в том, что у Вселенной нет ни начала, ни будущего. Вместо горячего Большого взрыва теория защищает холодную и медленно эволюционирующую Вселенную. Согласно Веттериху, теория объясняет флуктуации плотности в ранней Вселенной (первичные флуктуации) и то, почему в нашем нынешнем космосе преобладает темная энергия.

Читайте также:  Время существования вселенной веды

2. Индуистская космология

Религия и наука были лучшими врагами, по крайней мере со времен Коперника и Галилея. Возможно, нет места науке, когда мы говорим о религии и наоборот. Однако есть одна религия, космологические верования которой хорошо согласуются с современной моделью Вселенной.

Теории творения в индуистской мифологии широко рассматриваются как одна из самых древних и значимых из всех других религиозных аналогий. На протяжении многих лет выдающиеся физики и космологи, включая Карла Сагана и Нильса Бора, восхищались индуистскими космологическими верованиями за их близкое сходство с временными линиями в стандартной космологической модели Вселенной.

Согласно индуистской мифологии, Вселенная следует бесконечной циклической модели. Это означает, что на смену нашей нынешней Вселенной придет бесконечное количество вселенных. Каждая повторение Вселенной делится на две фазы — «калпа» (или день Брахмы) и «пралая» (ночь Брахмы), и каждая из них длится 4,32 миллиарда лет. Согласно индуистской мифологии, возраст Вселенной (8,64 миллиарда лет) превышает расчетный возраст Солнечной системы.

1. Стационарная Вселенная

Стационарная модель утверждает, что наблюдаемая Вселенная остается неизменной в любом месте и в любое время. Во Вселенной, которая вечно расширяется, материя непрерывно создается, чтобы заполнить пространство.

Согласно модели, галактики и другие крупные астрономические тела рядом с нами должны казаться похожими на те, что находятся далеко. Однако Большой взрыв говорит нам, что далекие галактики должны выглядеть моложе, чем находящиеся в непосредственной близости (при наблюдении с Земли), поскольку свету требуется гораздо больше времени, чтобы добраться до нас.

Идея стационарного состояния была впервые предложена в 1948 году космологами Германом Бонди, Фредом Хойлом и Томасом Голдом. Она исходила из совершенного космологического принципа, который сам по себе утверждает, что Вселенная, где бы ты ни смотрел, одинакова, и она всегда будет одинаковой.

Теория стационарных состояний получила широкую популярность в начале и середине XX века. Однако к 1960-м годам она была в основном отвергнута научным сообществом в пользу Большого взрыва после открытия космического микроволнового фона.

Источник

Естествознание.ру

Краткая история Вселенной

Итак, примерно 13,8 миллиардов лет назад произошел Большой взрыв, и 13,8 миллиардов световых лет — это горизонт видимости во Вселенной. Самые дальние объекты, которые астрономам уже удалось разглядеть, это несколько звездных скоплений на расстоянии 13,2 миллиардов световых лет. Таким образом, мы «получили привет» от молодой Вселенной, возраст которой был всего 600 миллионов лет!

В принципе, мы могли бы заглянуть еще чуть дальше — вплоть до возраста 379 тысяч лет после Большого Взрыва. Почему именно такая цифра? Скоро узнаем.

Современные теории позволяют описать всё, что происходило, начиная от одной сотой секунды от Большого взрыва и до сего дня. Все нужные для этого законы являются надежно установленными, поэтому получаемую с их помощью информацию можно считать вполне достоверной. Принципиальные трудности возникают лишь при попытке продвинуться еще ближе к началу мира, то есть внутрь первой сотой доли секунды. Здесь мы выходим за рамки Стандартной модели и попадаем в область гипотетических теорий. И тем не менее научные гипотезы простираются вплоть до 10 -35 с! Ещё ближе к началу мира, возможно, позволит в будущем приблизиться теория суперструн.

Давайте «прокрутим» основные события от Большого взрыва и до нашей эпохи. Итак.

Большой взрыв. По каким бы причинам ни возникла Вселенная, она начинает свою жизнь с планковского размера по всем измерениям (порядка 10 -35 м) и планковской температуры (порядка 10 32 К).

В этот начальный момент все 9 или 10 пространственных измерений свернуты в комок. Но уже через планковский квант времени (5×10 -44 с) три пространственных измерения начинают расширяться, а оставшиеся сворачиваются определенным образом (свойства свернутых измерений определяют все фундаментальные константы нашего мира, а значит, и то, какие именно частицы потом в нем родятся).

Разворачивание трех пространственных измерений подстегивается само собой и становится скачкообразным. Этот этап расширения Вселенной, называют инфляционным, оно происходит во много раз быстрее обычного хаббловского расширения. Примерно за 10 -32 секунды Вселенная раздулась в неимоверное число (10 50 ) раз.

Поначалу в горячей Вселенной бурно рождаются как частицы, так и античастицы. На каждый миллиард обычных частиц рождается почти столько же античастиц — но всё же на одну меньше. Затем частицы и античастицы аннигилируют, и вся их энергия превращается в излучение. Во Вселенной остается лишь жалкий клочок обычной материи. Из него-то и будут построены в дальнейшем все звезды и галактики.

Читайте также:  Наша галактика вращается вокруг центра вселенной

К концу первой секунды расширения Вселенная остыла настолько, что кварки начинают группироваться в адроны, включая протоны и нейтроны. И с этого же момента начинается первичный ядерный синтез, который продолжается три минуты. Четверть всех ядер, сформировавшихся за это время — это гелий, чуточку дейтерия, а остальные три четверти — протоны. Таким и будет состав первых звезд.

Через 3 минуты Вселенная расширилась настолько, что столкновения ядер, в результате которых могли бы образовываться новые ядра, становятся огромной редкостью, и синтез ядер прекращается.

К исходу первых трёх минут Вселенная представляет собой раскаленное до миллиарда градусов море частиц — ядер и лептонов. Высокая температура не позволяет им объединиться в атомы. Это состояние раскаленной плазмы.

В следующие 379 тысяч лет ничего заметного не происходит — Вселенная спокойно расширяется и остывает. В этот период она непрозрачна для излучения, потому что фотоны постоянно рассеиваются на свободных электронах и ядрах. Это похоже на «светящийся туман».

Через 379 тысяч лет Вселенная охладилась достаточно (до 3000 градусов), чтобы из ядер и электронов могли образоваться нейтральные атомы. Среда становится прозрачной для света и остается таковой до сих пор. Говорят, что в этот момент излучение отделилось от вещества: с тех пор излучение расширяется и остывает само по себе, а вещество эволюционирует само по себе. Реликтовое тепловое излучение с характерной длиной волны около 4 см — это и есть то самое отделившееся излучение.

После отделения излучения от вещества началась тёмная эпоха — звезд еще не было, и светить было некому. На протяжении сотен миллионов лет вещество стягивалось к местам случайных первоначальных сгустков темной материи.

Через 600 миллионов лет после Большого взрыва стали формироваться галактики. Плотные и холодные облака газа сжимались, разогреваясь изнутри — и вот зажглись первые звезды. В их недрах начался синтез более тяжелых элементов, вплоть до железа. Через пару миллиардов лет Вселенная стала отдаленно напоминать то, что мы видим сегодня.

Массивные звезды первого поколения кончали свои жизни грандиозными взрывами, во время которых возникли элементы тяжелее железа. Потом из этого вещества сформировались звездные системы второго поколения, в том число и наша.

Процесс звёздообразования продолжается и сейчас, хотя темп его постепенно замедляется, поскольку запасы межзвездного вещества расходуются быстрее, чем пополняются.

Что касается нашего Солнца, то про его будущее можно сказать достаточно определенно. Солнце принадлежит к классу желтых карликов — спокойных долгоживущих звёзд. Уже около 5 млрд. лет оно светит, практически не меняясь. Но это может закончиться уже через 0,5 — 1 млрд. лет, когда водород в ядре звезды выгорит и зона термоядерного синтеза переместится в слои вокруг ядра. Это приведёт к «раздуванию» Солнца — оно превратится в красного гиганта. Через 4 миллиарда лет Солнце раздуется так, что поглотит Меркурий, Венеру и почти достигнет орбиты Земли. На Земле вся вода испарится, а большая часть атмосферы рассеется в космическое пространство. Ничего живого, понятное дело, не останется. А в ядре Солнца гелий начнет превращаться в углерод. Когда же и гелий «выгорит», Солнце может взорваться, сбросив свою распухшую оболочку. Оставшееся после взрыва компактное ядро (белый карлик) будет постепенно остывать, превращаясь в холодное безжизненное тело.

А что касается возможного развития Вселенной в будущем, то имеются самые разные сценарии. Теоретики, например, рассматривают гипотезу «Большого разрыва», связанного с изменением состояния вакуума, в момент которого наша Вселенная исчезнет за одно мгновение. Но это не очень скоро — через 22 млрд. лет, и не наверняка.

Если же такого не произойдет, то через сотни миллиардов лет погаснут последние звезды, и галактики погрузятся во тьму. Все планетные системы будут постепенно разрушены. Вероятно, галактики превратятся в гигантские черные дыры. В результате квантового процесса «испарения» черные дыры в конце концов тоже исчезнут, и Вселенная будет представлять собой расширяющийся нейтринно-фотонный газ. В общем, совершенно безрадостная картина.

Но история космологии уже неоднократно демонстрировала нам, что картины, нарисованные совсем недавно, неожиданно оказываются устаревшими.

Реальность бесконечно разнообразнее и интереснее наших сегодняшних представлений о ней. Работы для физиков и космологов — непочатый край!

Источник

Adblock
detector