Меню

Стрела времени определяет направление эволюции нестационарной неравновесной вселенной

Реферат: Космологическая стрела времени

Время — неотъемлемая составляющая нашего бытия. Включение времени в галилеевскую механику ознаменовало рождение новой науки. Основная тема нашего реферата – проблема стрелы времени.

— Метафорическое обозначение направления времени

— концепция, описывающая время как прямую (т.е. математически одномерный объект), протянутую из прошлого в будущее. Из любых двух несовпадающих точек оси времени одна всегда является будущим относительно другой.

Английский астрофизик Фрейд Хойл высказал мысль о связи направления времени с направлением процесса увеличения расстояния между галактиками.

Фрейд Хойл
(1915-2001)

Для характеристики однонаправленности и необратимости времени английский астрофизик А. Эддингтон ввел понятие, «стрела времени».

По мнению А. Эддингтона, Ф. Хойла и некоторых других «стрела времени» существует, потому что Вселенная расширяется. Если в будущем расширение сменится сжатием, то, по мнению этих ученых, изменится и направление «стрелы времени».

Загадкой является тот факт, что все три «стрелы» направлены в сегодняшней Вселенной в одну сторону.

С. Хоукинг в недавно вышедшей книге «Краткая история времени» обсудил эту проблему, и мы приведем здесь некоторые его соображения.

Стивен Уильям Хокинг
(1942- н.в.)

Эволюционно выделяют три стрелы времени:

— термодинамическая стрела, указывающая то направление времени, в котором возрастает энтропия или беспорядок;

— космологическая стрела времени, в направлении которой происходит расширение Вселенной;

— психологическая стрела или направление времени, соответствующее нашему ощущению непреклонного хода времени, направление накопления поступающей информации.

Космологическая стрела времени определяет направление эволюции нестационарной, неравновесной Вселенной.

Однако расширение Вселенной, о котором свидетельствует т.н. “красное смещение” спектральных линий в излучении удаляющихся друг от друга галактик («разбегания» галактик) не означает расширения в каждом месте , иначе расширялись бы размеры тел, а этого не наблюдается. А поскольку нет этого общего физического влияния, разбегание галактик или расширения Вселенной не может влиять на ход времени в элементарных процессах. Связь с расширением Вселенной может определять только «космологическую шкалу времени ».

Термодинамическая стрела указывает направление времени в сторону увеличения энтропии Больцмана, т. е. в направлении самопроизвольного роста беспорядка в изолированных системах.

В термодинамике подчёркивается выделенность направления времени (неравноценность прошлого и будущего). Во всех процессах существует выделенное направление, в котором процессы идут сами собой от более упорядоченного состояния к менее упорядоченному. Чем больше порядок системы, тем сложнее восстановить его из беспорядка. Несравненно проще разбить стекло, чем изготовить новое и вставить его в раму.

«Гораздо проще убить живое существо, чем возвратить его к жизни, если вообще возможно. Бог сотворил маленькую букашку. Если ты её раздавишь, она умрёт.» — такой эпиграф поставил американский биохимик Сент Дьерди к своей книге

Психологическая стрела определяет направление стрелы времени в наших собственных ощущениях прошлого и будущего. На мой взгляд, это довольно зыбкое понятие. Конечно, мы отличаем вчера от сегодня и сегодня от завтра, помним, что-то из прошлого нашей жизни.

«Всему свое время, и время всякой вещи под небом: время рождаться, и время умирать; время насаждать,- и время вырывать посаженное; время убивать, и время врачевать; время разрушать, и время строить; время плакать, и время смеяться; время сетовать, и время плясать; время разбрасывать камни, и время собирать камни; время обнимать, и время уклоняться от объятий; время искать, и время терять; время сберегать и время бросать; время раздирать, и время сшивать; время молчать, и время говорить; время любить, и время ненавидеть; время войне, и время миру

Совпадение направления космологической, термолинамической и психологической стрел времени

С. Хоукинг в недавно вышедшей книге «Краткая история времени» обсудил эту проблему, и мы приведем здесь некоторые его соображения.

Психологическая стрела времени

она всегда указывает в направлении увеличения беспорядка, ибо путей к увеличению беспорядка всегда несравненно больше, чем ведущих к упорядочению. Поэтому с гораздо большей вероятностью увеличивается «хаос», чем наступает порядок.

Психологическая стрела времени

«Направление времени, — пишет С. Хоукинг, — в котором компьютер запоминает прошлое, совпадает с направлением, в котором возрастает беспорядок.

любые человеческие существа, которые наблюдали бы чашки, жили бы во Вселенной, в которой беспорядок уменьшается со временем.

Такие существа имели бы «психологическую стрелу времени», направленную вспять.

Это означает, что они помнили бы события будущего и не помнили бы события в их прошлом.

В момент, когда чашка разбита, они помнили бы ее стоящей на столе, но в момент, когда она была на столе, они не помнили бы ее находящейся на полу.

Итак, «психологическая» и «термодинамическая» стрелы времени должны совпадать.

По теории С.Хокинга

направление космологической стрелы совпадает с направлением двух упомянутых. Но возможно, что так будет не всегда. Если плотность материи во Вселенной превышает критическое значение, то в будущем наступит момент, когда расширение сменится сжатием. В этот момент сменит свое направление и «космологическая стрела времени», а две остальные по-прежнему будут указывать то же направление. И между тремя стрелами времени наступит рассогласование.

Источник

Стрела времени определяет направление эволюции нестационарной неравновесной вселенной

Помощь

Каждый вопрос экзамена может иметь несколько ответов от разных авторов. Ответ может содержать текст, формулы, картинки. Удалить или редактировать вопрос может автор экзамена или автор ответа на экзамен.

Неравновесные термодинамические системы

Второе начало термодинамики описывает эволюцию изолированных систем как изменение, связанное с возрастанием энтропии, т.е. переходом от упорядоченных состояний к хаотичным, от сложного к простому. Такая направленность эволюции противоположна направленности эволюционных процессов в биологии. Возникшее кажущееся противоречие было снято с появлением неравновесной термодинамики, исследующей необратимые процессы в неравновесных открытых системах. Это такие системы, в которых неравновесное состояние поддерживается стационарно притоками энергии и вещества извне. В неравновесной термодинамике определяются условия, при которых энтропия открытых систем может убывать, что означает возрастание упорядоченности в таких системах, формирование в них новых структур.

Эволюция сложных природных неравновесных систем рассматривается как процесс самоорганизации в них. Самоорганизация означает образование в системе определенной упорядоченной структуры без внешнего организующего воздействия.

Самые важные выводы были получены термодинамикой в отношении сильнонеравновесных систем. Подобные системы описываются нелинейными дифференциальными уравнениями, имеющими, вообще говоря, не единственное решение. Каждое решение соответствует определенному типу поведения системы. При возрастании т.н. термодинамических сил, характеризующих неравновесность системы (например, градиенты температуры или концентрации вещества) состояние неравновесной системы теряет устойчивость. Это означает, что малые вариации условий могут повлечь за собой резкое изменение состояние системы. При этом возрастает роль флуктуаций, возникающих благодаря неконтролируемому воздействию извне. В равновесных системах флуктуации релаксируют и исчезают, в неравновесных системах флуктуации могут разрастаться, создавая новый тип поведения. При этом наблюдается когерентное (согласованное) поведение различных элементов системы, приводящее к созданию новой стационарной структуры, существующей лишь в неравновесных условиях.

Пример – ячейки Бернара, упорядоченные конвективные структуры в слое жидкости, перпендикулярно которому направлен достаточно мощный и однородный тепловой поток. При этом флуктуация разрастается на всю систему, в ней устанавливается определенный порядок, в когерентное движение вовлекается больше 1000 частиц.

Неравновесные стационарные структуры отличаются от равновесных структур (например, кристаллов). Структуры, возникающие как результат самоорганизации в сильнонеравновесных системах, называются диссипативными, поскольку они существуют лишь за счет достаточно больших потоков энергии извне и способствуют эффективному рассеянию (диссипации) энергии. Они образуются в короткий промежуток времени в результате быстрой качественной перестройки системы, напоминающей фазовый переход (смену агрегатного состояния).

На рисунке показана диаграмма, качественно отображающая смену термодинамических ситуаций по мере увеличения в ней некоторого потока некоторой термодинамической силы (перепада температуры, давления и др.).

В нулевой точке система находится в равновесном состоянии. При появлении движущей силы и возрастании потока система становится неравновесной. Вблизи нуля (область 1) система слабонеравновесна, линейна и детерминирована. Возникающие в ней флуктуации затухают.

При достижении движущей силой достаточного большого значения система меняет свое поведение, становится нелинейной (область 2), все более заметную роль начинают играть флуктуации.

Образование упорядоченных структур происходит в области 3, где система становится неустойчивой. Флуктуации не гасятся, а усиливаются за счет обратных связей в системе и захватывают всю систему. Вместо одного варианта развития возможно несколько новых. Поскольку флуктуации возникают случайно, то и выбор системой одного из новых вариантов своего поведения непредсказуем.

Состояние, при котором в сильнонеравновесной и неустойчивой системе происходит переход к новому типу поведения, называется точкой бифуркации. Выбор нового варианта поведенияносит вероятностный характер, что делает процесс эволюции системы принципиально необратимым. После осуществления выбора поведение системы на некотором отрезке (область 3) становится прогнозируемым. Таким образом, в поведении открытой сильнонеравновесной системы сочетаются случайность и детерминированность.

При дальнейшем увеличении движущих сил возникают новые бифуркации и ветвления (область 4). Системы, в которых бифуркации множественны, в ходе эволюции достигают такой степени запутанности поведения, что сложность становится беспорядком.

Процессы упорядочения и закон возрастания энтропии.

Когда система находится в неравновесном состоянии, и нет внешнего воздействия, то возникающие процессы переноса приводят систему в состояние ТД равновесия в соответствии с законом возрастания энтропии. Если же состояние неравновесно, и процессы переноса достаточно интенсивны, то на фоне общего стремления к равновесию могут возникать подсистемы, в которых энтропия локально убывает, а упорядоченность возрастает. В изолированной системе локальное уменьшение энтропии является временным, в открытой системе возможно возникновение стабильных диссипативных упорядоченных структур.

Локальной понижение энтропии, соответствующее локальной упорядоченности, обычно ничтожно мало по сравнению с суммарным увеличением энтропии системы в целом. Рождение локальных упорядоченных структур приводит к ускорению общего увеличения энтропии.

Необходимо отметить, что процесс образования упорядоченных структур в сильнонеравновесных системах неизбежен, он отражает стремление системы перейти к равновесному состоянию. Упорядоченные структуры реагируют на изменение внешних условий более чутко и разнообразно. Они могут легко разрушаться или превращаться в новые структуры. Нередко образование новой структуры невозможно без наличия предыдущей. В этом случае изменение состояний системы при изменении условий ее существования представляет собой однонаправленный процесс смены в ней одного порядка а другой, т.е. эволюцию .

В результате эволюции возникают новые упорядоченные системы, которые заменяют собой старые, когда происходит изменение внешних условий. Эти изменений могут быть вызваны, в том числе, и существованием данной упорядоченной подсистемы. В этом случае появляется основа для развития иерархических упорядоченных структур: на базе упорядоченность первого порядка возникает следующая, на базе упорядоченности второго порядка – упорядоченность третьего порядка и т.д., причем структуры высоких порядков должны приобретать качественно новые свойства, например, обратные связи, управляющие изменениями и упорядоченных структурах.

Таким образом, в случае достаточно мощных и длительных потоков через неравновесные системы появляется возможность (а в определенном смысле – необходимость) для самопроизвольного возникновения и развития локальной упорядоченности. При этом неустойчивость остается их характерным свойством.

Проведенный термодинамический анализ показывает, что явления, соответствующие эволюции живой природы, могут наблюдаться в любых сильнонеравновесных системах.

Природа полна проявлений самоорганизации в различных открытых неравновесных системах: в масштабе Вселенной самоорганизация проявилась в эволюции космологических систем; при формировании геологического облика Земли – в геологической эволюции; живые организмы, биологические виды и популяции представляют собой открытые системы, далекие от равновесия. К процессам самоорганизации относятся корпоративное поведение насекомых, регенерация живых тканей, вся жизнь на Земле, а также ее возникновение.

Необходимо отметить, что проблема возникновения жизни составляет предмет исторической дискуссии между естествознанием и религией. Эволюционная теория достаточно хорошо описывает развитие жизни, но не ее зарождение. Согласно равновесной термодинамике вероятность флуктуаций, приводящих к образованию высокоорганизованного белкового вещества из неорганической среды, чрезвычайно мала. Неравновесная термодинамика, наоборот, предполагает зарождение жизни не только принципиально возможным, но и необходимым. Жизнь представляется как высшее на данный момент проявление происходящей в природе самоорганизации.

Многообразие проявлений самоорганизации и возможность их исследования на основе единых принципов привели к развитию нового научного направления, названного синергетикой.

Эволюция и стрелы времени.

С понятием эволюции тесно связано понятие времени как возраста природных систем. В рамках эволюционной концепции для любого объекта необходимо рассматривать рождение (самоорганизация), развитие (смена упорядоченных форм) и распад (переход к неупорядоченному равновесному состоянию). Последовательность этих стадий задает стрелу времени.

Различным иерархическим уровням организации материи соответствует различный масштаб шкалы времени. Направленность же стрелы времени едина и определяется сутью процессов эволюции. Эволюционные процессы необратимы, необратимо и время.

В различных науках о природе эволюционные представления о природе формировались достаточно независимо, поэтому выделяют биологическую стрелу времени (развитие живых организмов), геологическую стрелу времени (формирование Земли), гелиологическую стрелу времени (возникновение и эволюция Солнечной системы), и наконец космологическую стрелу времени (эволюция Вселенной). При этом эволюционные процессы всех подсистем Вселенной можно рассматривать как составляющие единого эволюционного процесса. По мере расширения и остывания Вселенной происходит последовательный рост разнообразия и сложности форм материи.

Приведенная схема является, по сути, бифуркационной структурой. В точках бифуркации возникают новые материальные структуры, имеющие свою стрелу времени. Такое представление демонстрирует единство всего материального мира, а также увеличение разнообразия и сложности создаваемых Природой материальных объектов.

Источник

Читайте также:  Планета хаксли вселенная орвола

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Название: Космологическая стрела времени
Раздел: Рефераты по философии
Тип: реферат Добавлен 12:54:23 01 января 2011 Похожие работы
Просмотров: 315 Комментариев: 7 Оценило: 1 человек Средний балл: 5 Оценка: неизвестно Скачать