Строение Солнца
Ближайшая к нам звезда – это конечно Солнце. Расстояние от Земли до него по космическим параметрам совсем небольшое: от Солнца до Земли солнечный свет идет всего лишь 8 минут.
Солнце – это не обычный желтый карлик, как считали ранее. Это центральное тело солнечной системы, возле которой вертятся планеты, с большим количеством тяжелых элементов. Это звезда, образовавшаяся после нескольких взрывов сверхновых, около которой сформировалась планетная система. За счет расположения, близкого к идеальным условиям, на третьей планете Земля возникла жизнь. Возраст Солнца насчитывает уже пять миллиардов лет. Но давайте разберемся, почему же оно светит? Какое строение Солнца, и каковы его характеристики? Что ждет его в будущем? Насколько значительное влияние оно оказывает на Землю и ее обитателей? Солнце – это звезда, вокруг которой вращаются все 9 планет солнечной системы, в том числе и наша. 1 а.е. (астрономическая единица) = 150 млн. км – таким же является и среднее расстояние от Земли до Солнца. В Солнечную систему входят девять больших планет, около сотни спутников, множество комет, десятки тысяч астероидов (малых планет), метеорные тела и межпланетные газ и пыл. В центре всего этого и находится наше Солнце.
Солнце светит уже миллионы лет, что подтверждают современные биологические исследования, полученные из остатков сине-зелено-синих водорослей. Изменись температура поверхности Солнца хотя бы на 10 %, и на Земле, погибло бы все живое. Поэтому хорошо, что наша звезда равномерно излучает энергию, необходимую для процветания человечества и других существ на Земле. В религиях и мифах народов мира, Солнце постоянно занимало главное место. Почти у всех народов древности, Солнце было самым главным божеством: Гелиос – у древних греков, Ра – бог Солнца древних египтян и Ярило у славян. Солнце приносило тепло, урожай, все почитали его, потому что без него не было бы жизни на Земле. Размеры Солнца впечатляют. Например, масса Солнца в 330 000 раз больше массы Земли, а его радиус в 109 раз больше. Зато плотность нашего звездного светила небольшая – в 1,4 раза больше, чем плотность воды. Движение пятен на поверхности заметил еще сам Галилео Галилей, таким образом доказав, что Солнце не стоит на месте, а вращается.
Конвективная зона Солнца
Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.
Фотосфера Солнца
Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.
Хромосфера Солнца
Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.
Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.
Солнечная корона
Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.
Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.
Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.
Характеристики Солнца
• Масса Солнца: 2∙1030 кг (332 946 масс Земли)
• Диаметр: 1 392 000 км
• Радиус: 696 000 км
• Средняя плотность: 1 400 кг/м3
• Наклон оси: 7,25° (относительно плоскости эклиптики)
• Температура поверхности: 5 780 К
• Температура в центре Солнца: 15 млн градусов
• Спектральный класс: G2 V
• Среднее расстояние от Земли: 150 млн. км
• Возраст: 5 млрд. лет
• Период вращения: 25,380 суток
• Светимость: 3,86∙1026 Вт
• Видимая звездная величина: 26,75m
Источник
Полярная звезда
Темы для uCoz
Солнце — единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.
Структуру Солнца можно разделить на внутреннюю и внешнюю. Итак, по порядку от центра наружу.
1) Солнечное ядро является центральной частью Солнца с радиусом
150 000 — 175 000 км, в которой идут термоядерные реакции. Плотность вещества в ядре достигает 150 000 кг/м³ (в 150 раз выше плотности воды и в
6,6 раз выше плотности самого плотного металла на Земле — осмия), температура в центре ядра около 15 000 000 К. По современным данным известно, что скорость вращения ядра Солнца значительно выше, чем поверхностных слоев. В ядре протекает протон-протонная термоядерная реакция, в ходе которой четыре протона превращаются в гелий-4, при этом каждую секунду в излучение преобразуется 4,26 миллиона тонн вещества, что на самом деле является ничтожной долей по сравнению с массой Солнца — 2×10^27 тонн.
Ядро — единственное место на Солнце, в котором в ходе термоядерной реакции производится энергия и тепло, остальная часть звезды нагревается этой энергией, последовательно проходящей сквозь все слои, излучаясь в конечном итоге в виде солнечного света и кинетической энергии.
2) Зона лучистого переноса находится над ядром, на расстояниях примерно от 0,2 до 0,7 радиуса Солнца от его центра, в ней отсутствуют макроскопические движения вещества, а энергия переносится посредством переизлучения фотонов — водород сжат так плотно, что соседние протоны не могут поменяться местами, из-за чего перенос энергии путём перемешивания вещества практически невозможен. Еще одно препятствие для перемешивания вещества — низкая скорость убывания температуры от нижних слоёв к верхним вследствие высокой теплопроводностьи водорода. Прямое излучение наружу также невозможно, так как водород непрозрачен для излучения, происходящего в процессе ядерного синтеза.
Приходящий из солнечного ядра фотон поглощается частицей вещества (атомным ядром либо свободным протоном), после чего возбуждённая частица излучает новый квант света, направление которого никак не зависит от направления поглощённого фотона и может перейти как в вышестоящий слой плазмы в лучистой зоне, так и в более нижний слой. Из-за этого время, за которое многократно переизлучённый фотон достигает конвективной зоны, может составлять миллионы лет (в среднем для Солнца — 170 тысяч лет).
При переизлучении фотона происходит уменьшение его энергии, что в свою очередь влияет на изменение спектрального состава излучения — изначально на входе в зону лучистого переноса все излучение состоит из коротковолнового гамма-излучения, а на выходе из нее диапазон уже охватывает практически все длины волн, в том числе видимый свет.
Предполагается, что звёзды типа Солнца и меньше имеют лучистое ядро и конвективную атмосферу, а звезды больше 1,4 массы Солнца (по другим данным – больше 1,1) имеют конвективное ядро и лучистую атмосферу.
3) Конвективная зона располагается над зоной лучистого переноса. В ней, как и в лучистой зоне, вещество непрозрачно для излучения, однако его плотность уже не настолько велика, что позволяет происходить вихревому перемешиванию плазмы, и энергия переносится к поверхности преимущественно за счет движений самого вещества, то есть путем конвекции (отсюда и название). Процессы, происходящие в конвективной зоне, можно сравнить с подогревом воды в сосуде: огонь нагревает нижние слои воды, и они вследствие теплового расширения вытесняются вверх более тяжёлыми холодными слоями.
Толщина конвективной зоны составляет около 200 000 км. Её роль в физике солнечных явлений очень велика, поскольку именно в ней возникают разнообразные движения солнечного вещества и магнитные поля.
У красных карликов и красных гигантов зона конвекции занимает все пространство от ядра до фотосферы — давление в их недрах не может сжать вещество так сильно, чтобы препятствовать его перемешиванию, и привести к возникновению зоны лучистого переноса.
Атмосфера Солнца (внешнее строение):
1) Фотосфера лежит над конвективной зоной. Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца, из которой исходит подавляющее большинство видимого, оптического излучения Солнца. Температура фотосферы в среднем — 5800 К (по мере приближения к ее внешнему краю уменьшается до 4800 К), средняя плотность газа — менее 1/1000 плотности земного воздуха. Водород при таких условиях находится практически полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д.
Фотосфера практически непрозрачна, она поглощает, а затем переизлучает энергию, приходящую из нижних слоев, в ней перенос энергии также происходит путем конвекции — это наблюдается как грануляция фотосферы (образование гранул — светлых горячих конвективных ячеек). Толщина фотосферы Солнца
300 км, белых звёзд главной последовательности спектрального класса A0V
1000 км, для гигантов класса G
10^4 — 10^5 км, то есть значительно меньше диаметра звезды, результатом чего является резкий видимый край Солнца.
Видимое потемнение края солнечного диска есть следствие роста температуры фотосферы с глубиной, так как при равной оптической длине пути излучение центра диска приходит вертикально с более глубоких, горячих слоёв фотосферы, а излучение периферии диска идет по касательной из более холодных внешних слоёв. На поверхности фотосферы также могут создаваться большие области пониженной температуры (до 1500 К), что проявляется в виде солнечных пятен.
2) Хромосфера — внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Название хромосферы связано с её красным цветом, который является результатом преобладания в спектре красной H-альфа линии водорода. У верхней границы хромосферы нет выраженной гладкой поверхности, из неё часто происходят горячие выбросы — спикулы. Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов.
Вследствие небольшой плотности и яркости хромосферы ее невозможно увидеть в обычных условиях. Увидеть хромосферу можно лишь при полном солнечном затмении – при этом Луна закрывает яркую фотосферу, и хромосфера становится видимой и в красном цвете. Также ее можно наблюдать в любое время через специальные узкополосные оптические фильтры, которые выделяют излучение в определенной яркой хромосферной линии:
— фильтр с красной линией H-альфа (Hα) из серии Бальмера (длина волны 656,3 нм), снимок Солнца через него получается красноватым;
— фильтры двух фиолетовых фраунгоферовых линий ионизованного кальция (линия Ca II K (393,4 нм) и линия Ca II H (396,8 нм)), снимок Солнца через них получается синеватым.
Хромосферу обычно разделют на две зоны:
— нижняя хромосфера простирается примерно до 1500 км, состоит из нейтрального водорода, спектр содержит множество слабых спектральных линий;
— верхняя хромосфера состоит из отдельных спикул, которые выбрасываются нижней хромосферой на высоту до 10 000 км и разделяются более разреженным газом; температура выше, чем у нижней хромосферы, водород преимущественно ионизованный, в спектре — линии водорода, гелия и кальция.
Основные структуры хромосферы, видные в этих линиях:
— хромосферная сетка — покрывает всю поверхность Солнца и состоит из линий, окружающих ячейки супергрануляции размером до 30 т. км. в поперечнике, лучше всего видна в линиях Hα и Ca II K.
— флоккулы — светлые облакоподобные образования, чаще всего находящиеся в районах с сильными магнитными полями и окружающие солнечные пятна, лучше всего видны в линии Hα.
— волокна и волоконца (фибриллы) — тёмные линии разнообразной ширины и протяженности, также часто встречаются в активных областях и лучше всего видны в линии Hα.
3) Корона – последняя, внешняя оболочка, лежащая над хромосферой. Так как плотность вещества в короне незначительна, то несмотря на её огромную температуру (от 600 000 до 5 000 000 градусов), она имеет низкую яркость, и ее можно увидеть невооружённым глазом только во время полного солнечного затмения (совокупный блеск короны составляет от 0,8×10^6 до 1,3×10^6 блеска Солнца). Для наблюдения короны вне затмений применяется внезатменный коронограф..
Чрезвычайно интенсивный нагрев этого слоя вызван, как полагается, магнитным эффектом и воздействием ударных волн. Механизм нагрева короны, вероятно, тот же, что и у хромосферы — из глубины Солнца поднимаются конвективные ячейки (видимые в фотосфере в форме грануляции), что приводит к локальному нарушению равновесия в газе, и это в свою очередь вызывает распространение акустических волн в различных направлениях. Беспорядочное изменение плотности, температуры и скорости вещества, в котором распространяются эти волны, приводит к изменению скорости, частоты и амплитуды акустических волн, зачастую даже движение газа достигает сверхзвуковых значений. Это вызывает ударные волны, кинетическая энергия которых в конечном итоге преобразуется в тепловую.
Во время затмений корона в белом свете наблюдается как лучистая структура, форма которой зависит от фазы солнечного цикла:
— в период максимума солнечных пятен ее форма становится относительно круглой; у солнечного экватора и в полярных областях в короне наблюдаются прямые и направленные вдоль радиуса Солнца лучи;
— в период минимума пятен корональные лучи образуются только в экваториальных и средних широтах, форма короны становится вытянутой, у полюсов появляются характерные короткие лучи — полярные щёточки; при этом общая яркость короны уменьшается.
В короне наблюдаются структуры — корональные арки, лучи, перья, опахала и др. Корональные арки, например, представляют собой петлю (систему петель) магнитного поля с особо плотной плазмой.
Вследствие огромной температуры короны она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят через земную атмосферу, но в настоящий момент имеется возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны неравномерно: есть горячие активные и спокойные области, а также корональные дыры со сравнительно небольшой температурой (600 000 градусов), из которых в пространство выходят магнитные силовые линии. Подобная открытая магнитная конфигурация позволяет частицам свободно покидать Солнце, именно поэтому солнечный ветер исходит преимущественно из корональных дыр.
На сегодняшний день известно, что корона простирается до границ Солнечной системы, а значит Земля, так же, как и другие планеты, находятся внутри короны.
Источник