Меню

Строение вселенной галактики звезды звездные системы

Строение Вселенной

Перед тем, как узнать о строении Вселенной, нужно определиться с тем, что именно вы понимаете под этим понятием. У слова Вселенная, как ни странно, есть два значения. Первое – философское, объединяющее под собой все сущее и состоящее из пространства и времени. Второе – материальное, это астрономическая Вселенная, которая описывает не абстрактное «все», а конкретные объекты, небесные тела, звездные скопления, астероиды, космический мусор, и даже нас с вами. Вот об этом мы сегодня и поговорим.

Если углубиться в точечную структуру астрономической Вселенной, то окажется, что по большей части она состоит из водорода – на 75%. На втором месте находится гелий, занимающий около 23%, а остальные 2 приходятся на все остальные элементы, включая кислород и углерод.

Вселенная очень разряжена, ее плотность составляет 10 -29 г/см 3 , и преобладающими веществами в ней являются темная энергия и темная материя. Говоря точнее, материя – это все, что есть во Вселенной. Просто она бывает осязаемой – вещество, и неосязаемой – энергия. Вещество в свою очередь тоже разделяется на две группы согласно тому, может оно взаимодействовать с электромагнитным излучением или не может. Если нет, значит оно темное. И если с темным веществом все более ли менее понятно, то вот что такое темная энергия, объяснить сложно. Если коротко – это неструктурированная материя с отрицательным давлением, не позволяющая структурированной материи растягиваться. То есть благодаря ей метр всегда состоит из 100 сантиметров, даже несмотря на расширение Вселенной.

Кроме плотности, структуры, температуры и некоторых других характеристик, мы мало что можем сказать о Вселенной. Например, мы не знаем ее точного размера или формы. Непонятно даже, есть ли они у нее. То же самое можно сказать и про массу, которая ко Вселенной вообще не применяется.

Из чего состоит Вселенная

Итак, со структурой разобрались, теперь можно поговорить о более детальном строении мироздания. Начнем с самых больших объектов и будем двигаться к самым маленьким.

Состав Вселенной

Самые громадные области Вселенной – это далеко не галактики, как может показаться на первый взгляд. (Галактики даже не входят в топ-3, но об этом позже). Самые большие зоны – это пустоты или войды. Да, большую часть Вселенной составляет пустота, вы все правильно поняли. Войды – это такие участки космоса, в которых нет вообще ничего, даже галактических скоплений. Эти участки могут быть громадными: около 30 парсек. Но есть еще и супервойды, которые простираются на 150 мегапарсек и, скорее всего, занимают около половины всей Вселенной. Говоря слово «пустота», мы подразумеваем, что там нет звезд, планет и прочих небесных тел. Но по-прежнему присутствует вакуум, который на самом деле не такой уж и пустой.

Следующими по размеру после войдов являются галактические нити. Как вы уже, наверное, догадались по названию, это структура представляет собой нить из галактик. Ее длина в среднем составляет около 70-80 мегапарсек. Нити простираются между войдами и могут образовывать собой что-то вроде стен, состоящих из сверхскоплений. Кстати о них.

Сверхскопления галактик – следующая по величине структура во Вселенной. Она включает в себя группы и скопления галактик, которые вытягиваются по длине примерно на 10-50 мегапарсек. В редких случаях длина может достигать 100 мегапарсек, а толщина – 1. В отличие от нитей, сверхскопления состоят из нескольких волокон, которые переплетаются между собой, образуя единую структуру. А между этими волокнами располагаются пустоты.

Сверхскопления галактик

Далее идут скопления галактик, которые представляют собой галактические системы общим размером около 100 световых лет и массой больше тысячи масс Солнца. Скопления галактик бывают правильными, неправильными и промежуточными. Первые также называют регулярными, они имеют округлую форму и увеличивают густоту галактик от краев к центру. Вторые – иррегулярные, их форма может быть произвольной, а концентрация галактик, наоборот, уменьшается к центру.

Помимо скоплений, есть еще и группы галактик. Формально это одно и то же, просто группами называют объединения до ста «участников», а скоплениями – больше ста. Но в плане строения разницы между ними нет.

Наконец-то мы подобрались к чему-то более знакомому – галактики. Это структуры, состоящие из групп звездных систем, космической пыли и межзвездного газа. Газ заполняет собой пространство между звездами и является крайне разряженным веществом с плотностью менее атома на кубический сантиметр. Ну а пыль – это просто пыль, частицы которой настолько маленькие, что вы их даже не увидите. Самые крупные из них составляют десятую долю миллиметра в диаметре. Все галактики удалены от нас на огромные расстояния, кроме той, в которой мы находимся, конечно же. Они бывают разными: эллиптическими, спиральными, карликовыми и так далее. Они все различаются по массе и размерам. Например, диаметр самой большой из всех известных нам галактик IC 1101 составляет 600 килопарсек.

Читайте также:  Самые сильные персонажи вселенной наруто

Спиральная галактика NGC 4414

Все галактики состоят из звездных скоплений. Это группа звездных систем с общим происхождением, которые движутся в гравитационном поле галактики как одна цельная структура. Вы можете знать их как созвездия.

Звездные системы представляют собой одну звезду или целую группу вместе с их планетными системами, объединенных друг с другом гравитацией.

Планетная система – это все небесные тела, захваченные гравитацией звезды и вращающиеся вокруг нее. Наша Солнечная система тоже является такой структурой. Сюда входит сама материнская звезда, планеты, их спутники, астероиды, кометы и другие более мелкие объекты.

Звезда – небесное тело, достаточно большое для того, чтобы в его ядре начали протекать термоядерные реакции, выделяющие колоссальное количество энергии. Звезды разделяются на разные виды в зависимости от размера и температуры. Ближайшая к нам звезда – Солнце.

Звезды

Вокруг небесного светила в планетной системе вращаются планеты. Эти небесные тела имеют достаточную массу, чтобы обзавестись собственным гравитационным полем и очистить свою орбиту, но они все еще не настолько большие, чтобы запустить термоядерные реакции в ядре. В нашей системе насчитывается восемь планет, включая Землю.

Карликовые планеты также обладают своим гравитационным полем и могут принять форму шара, но они не способны очистить окрестности своей орбиты от различного мусора, так как слишком маленькие. Под данное определение подходит Плутон, который не так давно считался девятой планетой Солнечной системы.

Помимо всего прочего, в звездных системах еще есть спутники планет и более мелкие тела: астероиды, кометы, метеороиды и многое другое.

Источник

Строение Вселенной

Вселенная — это необъятные просторы, в которых находиться черная материя, триллионы галактик и звездных скоплений. У нее нет границ ни в пространстве, ни во времени.

Огромные космические просторы таят в себе много тайн, для разгадки которых важно определить принципы эволюции и строение Вселенной.

С чего началось мироздание?

Сегодня трудно в это поверить, но огромное космическое пространство 14 млрд лет было всего лишь точкой. Небольшой шар состоял из плотного и горячего протовещества. В один момент, эта “точка” взорвалась и мельчайшие элементы разлетелись. Эта гипотеза происхождения Вселенной называется Теорией Большого Взрыва. Это наиболее логичное предположение, из-за чего является основным.

Все частицы, которые были образованы в результате взрыва, удалились от эпицентра происшедшего и со временем начали взаимодействовать между собой. С рассеянной материи сформировались сгустки, которые впоследствии преобразовались в звезды. Под воздействием центробежных и гравитационных сил были образованы галактики.

Процесс расширения Вселенной и формирование новых “уплотнений” происходит ежесекундно. Именно поэтому, ученым трудно указать границы мироздания.

Эволюция

Полагаясь на достоверность Теории Большого взрыва, ученые предполагают, что эволюция Вселенной происходила в такой последовательности:

Эпоха сингулярности

Это наиболее ранний период развития мироздания. Небольшая точка, которая состоит из протонов и нейтронов, “взрывается”. Время такого “Бума” составляет всего 0,0001 секунды. После этого, стартовал процесс синтезирования частиц, за счет чего образуется водород и гелий. Из-за высочайшей температуры в миллиарды градусов, этот процесс происходит быстро, что приводит к расширению космического пространства.

Эпоха инфляции

В этот период, просторы Вселенной заполнила энергия одинаково высокой плотности, невероятно высокой температуры и давления. Это приводит к быстрому расширению и постепенному охлаждению. Эпоха знаменательна столкновением и разрушением частиц и античастиц. Это приводит к превосходству материи над антиматерией.

Эпоха охлаждения

Уменьшение плотности и температуры на космических просторах стало причиной минимизации энергии в каждой частице. Эти процессы происходили до того момента, как все элементарные частицы преобразовались в современные формы. В этот период, плотная материя была равномерно распространена по просторам космоса.

Иерархическая эпоха

На протяжении нескольких миллиардов лет, наиболее плотные участки начали соединяться между собой, образуя газовые облака, звезды и галактики. В нашей Вселенной начали образовываться структурные формирования, которые мы можем наблюдать сейчас.

Основные элементы строения

Крупномасштабная структура Вселенной поможет определить состав и строение мироздания. В огромных вселенских просторах можно увидеть волокна и пустоты, которые образуют сверхскопления, галактики и звезды. Начальный этап структурирования мироздания начинается с образования водородного газа. Под воздействием гравитационных сил, он преобразовывается в плотные, тяжелые сгустки. Их масса в тысячи раз превышает массу любой из галактик. В тех участках, где было наибольшее скопление водородного газа сформировались мегагалактики. На участках с меньшим количеством газа образовались меньшие звездные дома, наподобие нашего Млечного пути.

Читайте также:  Майлз форкосиган его вселенная

Протогалактики, которые вращались слишком быстро, со временем преобразовались в спиральные звездные дома. А на тех участках, где наблюдалось медленное вращение, происходило сжатие водородного газа и сформировались неправильные, эллиптические галактики.

В этот же период, звездные дома образовывали сверхскопления, края которых соприкасались. В каждом из таких формирований находились звезды, туманности, космическая пыль. Но основным объектом является черная материя.

“Звездные дома”: классификация и особенности

Точная информация о видах и границах галактик стала известна после проведенных исследований Эдвином Хабллом. Астрофизик предложил следующую классификацию:

  1. Спиральные. Это наиболее распространенные “звездные дома”. Они представлены в виде своеобразных спиралей, которые собраны вокруг ядра либо исходят от галактической “перемычки”. Наш Млечный путь относится к этому виду. Еще одним популярным представителем спиральных галактик является наша “соседка” — Андромеда. Она стремительно мчится по направлению к нам, из-за чего оба звездных дома могут столкнуться.
  2. Эллиптические. Они обладают нестандартной формой. На вселенских просторах их много, но они не выразительны из-за отсутствия космической пыли и звездного газа. В “эллипсах” находятся исключительно звездные скопления.
  3. Неправильные. Объекты, которые относятся к этому типу, не имеют четких границ и определенной формы. В их составе находятся облака газа и космическая пыль. Такие “звездные дома” могут поглощаться более крупными объектами.

Каждый из вселенских объектов — это уникальное формирование с таинственной структурой.

Будущее Вселенной

Наше мироздание началось с маленькой точки. Быстрое развитие и расширение границ привело к образованию необъятных космических просторов. Но, будет ли остановлено расширение? Возможен ли обратный вариант развития, то есть сжатия в ту же исходную плотную точку?

В 1990-х годах, специалисты пришли к выводу, что реальны два варианта будущего Вселенной.

“Сжатие” космических просторов возможно! При достижении максимальных размеров, она может разрушиться. Плотность черной материи может достичь критических показателей, из-за чего будет сжиматься.

Также, существует предположение, что причиной разрушения мироздания могут стать черные дыры. Все звездные скопления могут прекратить передачу энергии и преобразоваться в черные дыры. Если температура космического пространства приблизиться к нулю, возможно их испарение. В результате чего, все разрушиться и наступит логичный конец.

Источник

Галактики и структура Вселенной

Мегамир в его многообразии и единстве

Вселенная – это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития. Часть Вселенной, охваченная астрономическими наблюдениями, называется Метагалактикой. Размеры Метагалактики очень велики: радиус космологического горизонта составляет 15–20 млрд. световых лет. Строение и эволюция Вселенной изучаются космологией. Предмет космологии – весь окружающий нас мегамир, а ее задача состоит в описании наиболее общих свойств, строения и эволюции Вселенной. Космология – это раздел естествознания, находящийся на стыке наук, использующий достижения и методы астрономии, физики, математики, философии. Выводы космологии имеют большое мировоззренческое значение. Современная астрономия не только открыла грандиозный мир галактик, но и обнаружила уникальные явления, свидетельствующие о том, что Вселенная непрерывно развивается.

Галактики – это скопления звезд, связанных вместе гравитационным притяжением. Астрономы разделяют галактики на спиральные, эллиптические, и неправильной формы. Наше Солнце входит в спиральную Галактику (пишется с большой буквы, в отличие от всех прочих галактик с маленькой буквы), называемую Млечным путем и являющуюся лишь одной из сотен миллиардов галактик, которые можно увидеть с помощью современных телескопов; каждая галактика состоит из сотен миллиардов звезд. Звезды и туманности в пределах Галактики движутся довольно сложным образом. Прежде всего, они участвуют во вращении Галактики вокруг оси, перпендикулярной ее экваториальной плоскости. Различные участки Галактики имеют различные периоды обращения.

Звезды удалены друг от друга на огромные расстояния и тем самым практически изолированы друг от друга. Это означает, что звезды практически не сталкиваются друг с другом, хотя движение каждой из них определяется полем силы тяготения, создаваемым всеми звездами Галактики. Из расчетов следует ожидать одно столкновение в каждый миллион лет, в то время как в «нормальных» областях Галактики за всю историю эволюции нашей звездной системы, насчитывающую, по крайней мере, 10 млрд. лет, столкновений между звездами практически не было.

Число звезд в Галактике порядка триллиона. Самые многочисленные из них – карлики, массы которых примерно в 10 раз меньше массы Солнца. Кроме одиночных звезд и их спутников (планет), в состав Галактики входят двойные и кратные звезды, а также группы звезд, связанных силами тяготения и движущиеся в пространстве как единое целое, – звездные скопления. Существуют рассеянные звездные скопления, например Плеяды в созвездии Тельца. Такие скопления не имеют правильной формы; в настоящее время их известно более тысячи.

Читайте также:  Опишите известные вам модели вселенной кратко

Наблюдаются шаровые звездные скопления, например, в созвездии Геркулеса. Если в рассеянных скоплениях содержатся сотни или тысячи звезд, то в шаровых их сотни тысяч. Силы тяготения удерживают звезды в таких скоплениях миллиарды лет. В настоящее время известно около 150 шаровых скоплений. В различных созвездиях обнаруживаются туманные пятна, которые состоят в основном из газа и пыли, – это туманности, они тоже входят в состав нашей Галактики. Туманности неправильной, клочковатой формы называют диффузными, а те, которые, имеют правильную форму и напоминают по виду планеты, – планетарными.

Существуют еще светлые диффузные туманности, например, большая газопылевая туманность в созвездии Ориона. Интересна небольшая диффузная туманность, названная Крабовидной за свою необычную сетку из ажурных газовых волокон. Это источник не только оптического излучения, но и радиоизлучения, рентгеновских и гамма-квантов. В центре Крабовидной туманности находится источник импульсного электромагнитного излучения – пульсар, у которого впервые были обнаружены наряду с пульсациями радиоизлучения оптические пульсации блеска и пульсации рентгеновского излучения. Пульсар, обладающий мощным переменным магнитным полем, ускоряет электроны и вызывает свечение туманности в различных участках спектра электромагнитных волн.

Но даже там, где не видно ни звезд, ни туманностей, пространство не пусто. Оно заполнено очень разреженным межзвездным газом и межзвездной пылью. В межзвездном пространстве существуют и различные поля (гравитационное и магнитное). Пронизывают межзвездное пространство и космические лучи, представляющие собой потоки электрически заряженных частиц, которые при движении в магнитных полях разогнались до скоростей, близких к скорости света, и приобрели огромную энергию.

В начале ХХ в. было доказано, что некоторые туманные пятна, видимые в телескоп на разных участках неба, находятся вне нашей Галактики и представляют собой другие галактики, каждая из которых, подобно нашей, состоит из многих миллиардов звезд.

Мир галактик поражает своим разнообразием. Галактики резко различаются размерами, числом входящих в них звезд, светимостями, внешним видом. Их обозначают номерами, под которыми вносят в каталоги.

Как уже упоминалось, по внешнему виду галактики условно разделяются на три типа: эллиптические, спиральные и неправильные. Пространственная форма эллиптических галактик – эллипсоиды с разной степенью сжатия. Среди них встречаются гигантские и карликовые. Почти четверть всех изученных галактик относится к эллиптическим. Это наиболее простые по структуре галактики. Распределение звезд в них равномерно убывает от центра, пыли и газа почти нет. В них самые яркие звезды – красные гиганты.

Спиральные галактики – самый многочисленный вид. К нему относятся, например, наша Галактика и Туманность Андромеды, удаленная от нас примерно на 2,5 млн. световых лет.

Неправильные галактики не имеют центральных ядер, в их строении пока не обнаружены закономерности. Это Большое и Малое Магеллановы облака, являющиеся спутниками нашей Галактики. Они находятся сравнительно недалеко от нас, на расстоянии, всего лишь в полтора раза большем диаметра Галактики. Магеллановы облака значительно меньше нашей Галактики по массе и размерам.

Существуют и взаимодействующие галактики. Они обычно находятся на небольших расстояниях друг от друга, связаны «мостами» из светящейся материи, иногда как бы пронизывают одна другую.

Некоторые галактики обладают исключительно мощным радиоизлучением, превосходящим видимое излучение. Это радиогалактики. Например, галактика Лебедь А. В отличие от нашей и других «нормальных» галактик, Лебедь А излучает в радиодиапазоне энергии больше, чем в оптическом диапазоне.

Радиоизлучение межзвездной среды вызвано различными причинами. Радиоволны излучает находящийся в межзвездном пространстве ионизированный горячий газ. Нагрев и ионизацию газа (преимущественно водорода) вызывают горячие звезды и космические лучи. Другой источник радиоизлучения – нейтральный водород, которого в межзвездном пространстве значительно больше, чем ионизированного.

С 1963 г. начались открытия звездоподобных источников радиоизлучения – квазаров. Сейчас их открыто более тысячи. Самый яркий квазар (обозначаемый как ЗС 273) виден как звезда. Этот квазар, находящийся от нас на расстоянии около 3 млрд. световых лет, излучает больше энергии в оптическом диапазоне, чем самые яркие галактики. Кроме того, этот квазар оказался одним из самых мощных источников рентгеновского излучения.

Мир галактик очень разнообразен: он далеко не исчерпывается спиральными, эллиптическими и неправильными галактиками. Некоторым галактикам свойственны различные проявления активности, включая взрывные процессы в ядрах галактик. Мы еще далеко не все знаем о Метагалактике – охваченной астрономическими наблюдениями части Вселенной. Огромная удаленность объектов создает совершенно специфические трудности, которые разрешаются в результате применения самых мощных средств наблюдения в сочетании с глубокими теоретическими исследованиями.

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Adblock
detector