Меню

Строение вселенной материя темная материя

Строение вселенной материя темная материя

Мы стоим на пороге открытия, способного изменить суть наших представлений о Мире. Речь идет о природе темной материи. В последние годы астрономия сделала важнейшие шаги в наблюдательном обосновании темной материи, и сегодня существование такого вещества во Вселенной можно считать твердо установленным фактом. Особенность ситуации состоит в том, что астрономы наблюдают структуры, состоящие из неизвестного физикам вещества. Так возникала проблема идентификации физической природы этой материи.

1. «Принеси то, не знаю что»

Современной физике элементарных частиц неизвестны частицы, обладающие свойствами темного вещества. Требуется расширение Стандартной модели. Но как, в каком направлении двигаться, что и где искать? Слова из известной русской сказки, вынесенные в заголовок этого раздела, как нельзя лучше отражают текущую ситуацию.

Физики ищут неизвестные частицы, имея только общие представления о свойствах наблюдаемой материи. Каковы же эти свойства?

Мы знаем лишь то, что темное вещество взаимодействует со светящимся (барионами) гравитационным образом и представляет собой холодную среду с космологической плотностью, в несколько раз превышающей плотность барионов. Вследствие столь простых свойств темная материя прямо влияет на развитие гравитационного потенциала Вселенной. Контраст ее плотности усиливался с течением времени, приводя к образованию гравитационно-связанных систем гало темного вещества.

Следует подчеркнуть, что этот процесс гравитационной неустойчивости мог быть запущен во фридмановской Вселенной только при наличии затравочных возмущений плотности, само существование которых никак не связано с темной материей, а обусловлено физикой Большого взрыва. Поэтому встает другой важнейший вопрос о возникновении затравочных возмущений, из которых развилась структура темной материи.

Вопрос о генерации начальных космологических возмущений мы рассмотрим несколько позднее. А сейчас вернемся к темной материи.

В гравитационные ямы концентраций темной материи захватываются барионы. Поэтому, хотя частицы темной материи и не взаимодействуют со светом, свет находится там, где есть темное вещество. Это замечательное свойство гравитационной неустойчивости сделало возможным изучение количества, состояния и распределения темной материи по наблюдательным данным от радиодиапазона до рентгеновского диапазона.

Независимым подтверждением наших выводов о свойствах темной материи и о других параметрах Вселенной служат данные об анизотропии и поляризации реликтового излучения, о распространенности легких элементов во Вселенной, о распределении линий поглощения вещества в спектрах далеких квазаров. Все большую роль играет численное моделирование, заменившее собой эксперимент в космологических исследованиях. Ценнейшая информация о распределении темного вещества содержится в многочисленных наблюдательных данных о гравитационном линзировании далеких источников близлежащими сгустками материи.

Рис. 1. Фотография неба в направлении на скопление галактик 0024 + 1654, полученная на телескопе «Хаббл».

На рисунке 1 показан участок неба в направлении на один из таких сгустков темной массы ($\sim 10^<14>M_$). Мы видим скопление галактик, захваченных гравитационным полем этого сгустка, горячий рентгеновский газ, покоящийся на дне ямы гравитационного потенциала, и множественное изображение одной из галактик фона, оказавшейся на луче зрения темного гало и искаженной его гравитационным полем.

Таблица 1. Основные космологические параметры

Температура реликтового излучения

Космологическая плотность барионов

Космологическая плотность темной материи

Космологическая плотность темной энергии

Наклон спектра возмущений плотности

В таблице 1 приведены средние значения космологических параметров, полученные из астрономических наблюдений (точность 10%). Очевидно, суммарная плотность энергии всех видов частиц во Вселенной не превышает 30 % полной критической плотности (вклад нейтрино не более нескольких процентов). Остальные 70% находятся в форме, не принимавшей участия в гравитационном скучивании вещества. Таким свойством обладает лишь космологическая постоянная или ее обобщение — среда с отрицательным давлением ($|\varepsilon + p|\ll\varepsilon $), получившая название «темная энергия». Определение природы последней является дальней перспективой развития физики.

Данный доклад посвящен вопросам физической космологии, решение которых ожидается уже в ближайшие годы. В первую очередь это касается определения начальных условий для образования структур темной материи и поиска самих неизвестных частиц.

2. Ранняя Вселенная и поздняя Вселенная

Наблюдаемая структура Вселенной — результат совместного действия стартовых условий и эволюции поля возмущений плотности. Современные наблюдательные данные позволили определить характеристики поля возмущений плотности в разные эпохи его развития. Тем самым удалось разделить информацию о начальных условиях и об условиях развития, что положило начало независимому исследованию физики ранней и поздней Вселенной.

Под термином «ранняя Вселенная» в современной космологии подразумевают заключительную стадию ускоренного расширения с последующим переходом к горячей фазе эволюции. Нам неизвестны параметры Большого взрыва, имеются только верхние ограничения (см. раздел 3, соотношения (12)). Однако существует хорошо разработанная теория генерации космологических возмущений, в соответствии с которой мы можем рассчитать спектры начальных возмущений плотности вещества и первичных гравитационных волн в зависимости от значений космологических параметров.
Причины отсутствия общепринятой модели ранней Вселенной кроются в устойчивости предсказаний инфляционной парадигмы Большого взрыва — близости генерируемых спектров к плоскому виду, относительной малости амплитуды космологических гравитационных волн, трехмерной евклидовости видимой Вселенной и др., — которые могут быть получены в широком классе параметров моделей. Моментом истины для построения модели ранней Вселенной могло бы стать открытие космологических гравитационных волн, которое представляется возможным в случае успешного проведения международного космического эксперимента «Planck», который должен начаться в 2008 г.

Наши знания о поздней Вселенной диаметрально противоположны. Мы располагаем достаточно точной моделью — знаем состав материи, законы развития структуры, значения космологических параметров (см. табл. 1), но в то же время не имеем общепринятой теории происхождения компонент материи.

Известные нам свойства видимой Вселенной позволяют описать ее геометрию в рамках теории возмущений. Малым параметром ($10^<-5>$) является амплитуда космологических возмущений.

В нулевом порядке Вселенная является фридмановской и описывается единственной функцией времени -масштабным фактором $a(t)$. Первый порядок устроен несколько сложнее. Возмущения метрики являются суммой трех независимых мод — скалярной $S(k)$, векторной $V(k)$ и тензорной $T(k)$, каждая из которых характеризуется своей спектральной функцией волнового числа $k$. Скалярная мода описывает космологические возмущения плотности, векторная мода отвечает за вихревые движения вещества, а тензорная мода — это гравитационные волны. Таким образом, вся геометрия описывается с помощью четырех функций: $a(t),

V(k)$ и $Т(k)$, из которых сегодня нам известны лишь первые две (в некоторых областях определения).

Большой взрыв представлял собой катастрофический процесс быстрого расширения, сопровождаемый интенсивным быстропеременным гравитационным полем. В ходе космологического расширения возмущения метрики спонтанно рождались параметрическим образом из вакуумных флуктуации, как рождаются любые безмассовые степени свободы под действием внешнего переменного поля. Анализ наблюдательных данных свидетельствует о квантово-гравитационном механизме рождения затравочных возмущений. Тем самым крупномасштабная структура Вселенной является примером решения проблемы измеримости в квантовой теории поля.

Отметим основные свойства рожденных полей возмущений: гауссова статистика (случайные распределения в пространстве), выделенная временная фаза («растущая» ветвь возмущений), отсутствие выделенного масштаба в широком диапазоне длин волн, ненулевая амплитуда гравитационных волн. Последнее имеет решающее значение для построения модели ранней Вселенной, поскольку, имея простейшую связь с фоновой метрикой, гравитационные волны несут прямую информацию об энергетическом масштабе Большого взрыва.

В результате развития скалярной моды возмущений образовались галактики и другие астрономические объекты. Важным достижением последних лет (эксперимент WMAP (Wilkinson Microwave Anisotropy Probe)) стали серьезные уточнения наших знаний по анизотропии и поляризации реликтового излучения, которые возникли задолго до появления галактик в результате воздействия на распределение фотонов всех трех мод космологических возмущений.

Источник

Темная материя и темная энергия

Объекты глубокого космоса > Темная материя и темная энергия

Около 80% пространства представлено материалом, который скрыт от прямого наблюдения. Речь идет о темной материи – вещество, которое не производит энергию и свет. Как же исследователи поняли, что оно доминирует?

В 1950-х годах ученые начали активно заниматься изучением других галактик. В ходе анализов заметили, что Вселенная наполнена большим количеством материала, чем удается уловить на «видимый глаз». Сторонники темной материи появлялись каждый день. Хотя прямых доказательств ее наличия не было, но теории росли, как и обходные пути наблюдения.

Видимый нами материал называют барионной материей. Она представлена протонами, нейтронами и электронами. Полагают, что темная материя способна совмещать в себе барионную и небарионную материю. Чтобы Вселенная оставалась в привычной целостности, темная материя обязана находиться в количестве 80%.

Неуловимое вещество может быть невероятно сложным для поисков, если вмещает барионное вещество. Среди претендентов называют коричневых и белых карликов, а также нейтронные звезды. Разницу могут прибавлять и сверхмассивные черные дыры. Но они должны были вносить больше влияния чем то, что видели ученые. Есть и те, кто думает, что темная материя должна состоять из чего-то более непривычного и редкого.

Комбинированное изображение телескопа Хаббл, отображающее призрачное кольцо темной материи в скоплении галактик Cl 0024+17

Большая часть научного мира полагает, что неизвестное вещество представлено в основном небарионной материей. Наиболее популярный кандидат – WIMPS (слабо контактирующие массивные частицы), чья масса в 10-100 раз превосходит показатели протона. Но их взаимодействие с обычной материей слишком слабое, из-за чего сложнее находить.

Сейчас очень внимательно рассматривают и нейтралино – массивные гипотетические частички, превосходящие по массе нейтрино, но отличаются медлительностью. Их пока не нашли. В качестве возможных вариантов также учитывают меньшую нейтральную аксиому и нетронутые фотоны.

Еще один вариант – устаревшие знания о гравитации, которые требуют обновления.

Невидимая темная материя и темная энергия

Но, если мы чего-то не видим, как доказать, что оно существует? И с чего мы решили, что темная материя и темная энергия — это нечто реальное?

Масса крупных объектов вычисляется по их пространственному перемещению. В 50-х годах исследователи, рассматривавшие галактики спирального типа, предполагали, что приближенный к центру материал будет двигаться намного быстрее удаленного. Но выяснилось, что звезды перемещались с одинаковой скоростью, а значит, было намного больше массы, чем думали ранее. Изученный газ в эллиптических типах показал те же результаты. Напрашивался один и тот же вывод: если ориентироваться только на видимую массу, то галактические скопления давно бы разрушились.

Модель распределения темной материи во Вселенной 13.6 миллиардов лет назад.

Альберт Эйнштейн смог доказать, что крупные вселенские объекты способны изгибать и искажать световые лучи. Это позволило использовать их как естественную увеличительную линзу. Исследуя этот процесс, ученым удалось создать карту темной материи.

Получается, что большая часть нашего мира представлена все еще неуловимым веществом. Вы узнаете больше интересного о темной материи, если посмотрите видео.

Если говорить о материи, то темная безусловно лидирует по процентному соотношению. Но в целом она занимает лишь четверть всего. Вселенная же изобилует темной энергией.

С момента Большого Взрыва пространство запустило процесс расширения, что продолжается и сегодня. Исследователи полагали, что в итоге начальная энергия закончится и она замедлит свой ход. Но далекие сверхновые демонстрируют, что пространство не останавливается, а набирает скорость. Все это возможно только в том случае, если количество энергии настолько огромное, что преодолевает гравитационное влияние.

Разъяснение загадки

Мы знаем, что Вселенная, по большей части, представлена темной энергией. Это загадочная сила, которая приводит к тому, что пространство увеличивает скорость расширения Вселенной. Еще одним таинственным компонентом выступает темная материя, поддерживающая контакт с объектами только при помощи гравитации.

Ученые не могут разглядеть темную материю в прямом наблюдении, но эффекты доступны для изучения. Им удается уловить свет, изогнутый гравитационной силой невидимых объектов (гравитационное линзирование). Также замечают моменты, когда звезда совершает обороты вокруг галактики намного быстрее, чем должна.

Все это объясняется наличием огромного количества неуловимого вещества, воздействующего на массу и скорость. На самом деле, это вещество покрыто тайнами. Получается, что исследователи скорее могут сказать не, что перед ними, а чем «оно» не является.

На этом коллаже показаны изображения шести разных галактических скоплений, сделанные при помощи космического телескопа НАСА Хаббл. Кластеры были обнаружены во время попыток исследовать поведение темной материи в галактических скоплениях при их столкновении

Темная материя… темная. Она не производит свет и не наблюдается в прямой обзор. Следовательно, исключаем звезды и планеты.

Она не выступает облаком обычной материи (такие частички называют барионами). Если бы барионы присутствовали в темной материи, то она проявилась бы в прямом наблюдении.

Исключаем также черные дыры, потому что они выступают гравитационными линзами, излучающими свет. Ученые не наблюдают достаточного количества событий линзирования, чтобы вычислить объем темной материи, которая должна присутствовать.

Хотя Вселенная – огромнейшее место, но началось все с наименьших структур. Полагают, что темная материя приступила к конденсации, чтобы создать «строительные блоки» с нормальной материей, произведя первые галактики и скопления.

Чтобы отыскать темную материю, ученые применяют различные методы:

  • Большой адронный коллайдер.
  • инструменты, вроде WNAP и космическая обсерватория Планка.
  • эксперименты прямого обзора: ArDM, CDMS, Zeplin, XENON, WARP и ArDM.
  • косвенное обнаружение: детекторы гамма-лучей (Ферми), нейтринные телескопы (IceCube), детекторы антивещества (PAMELA), рентгеновские и радиодатчики.

Углубляемся в тайну

Еще ни раз ученые не смогли в буквальном смысле увидеть темную материю, потому что она не контактирует с барионной, а значит, остается неуловимой для света и прочих разновидностей электромагнитного излучения. Но исследователи уверены в ее присутствии, так как наблюдают за воздействием на галактики и скопления.

Стандартная физика говорит, что звезды, расположенные на краях галактики спирального типа, должны замедлять скорость. Но выходит так, что появляются звезды, чья скорость не подчиняется принципу расположения по отношению к центру. Это можно объяснить лишь тем, что звезды ощущают влияние от невидимой темной материи в ореоле вокруг галактики.

Наличие темной материи также способно расшифровать некоторые иллюзии, наблюдаемые во вселенских глубинах. Например, присутствие в галактиках странных колец и световых дуг. То есть, свет от отдаленных галактик проходит сквозь искажение и усиливается невидимым слоем темной материи (гравитационное линзирование).

Пока у нас есть несколько идей о том, что собою представляет темная материя. Главная мысль – это экзотические частицы, не контактирующие с обычной материей и светом, но имеющие власть в гравитационном смысле. Сейчас несколько групп (одни используют Большой адронный коллайдер) работают над созданием частиц темной материи, чтобы изучить их в лабораторных условиях.

Другие думают, что влияние можно объяснить фундаментальной модификацией гравитационной теории. Тогда получаем несколько форм гравитации, что существенно отличается от привычной картины и установленных физикой законов.

Расширяющаяся Вселенная и темная энергия

Ситуация с темной энергией еще более запутанная и само открытие в 1990-х годах стало непредсказуемым. Физики всегда думали, что сила притяжения работает на замедление и однажды может приостановить процесс вселенского расширения. За измерение скорости взялось сразу две команды и обе, к своему удивлению, выявили ускорение. Это словно вы подбрасываете яблоко в воздух и знаете, что оно обязано упасть вниз, а оно удаляется от вас все дальше.

Стало ясно, что на ускорение влияет некая сила. Более того, кажется, чем шире Вселенная, тем больше «власти» получает эта сила. Ученые решили обозначить ее темной энергией.

Если темную материю можно хоть как-то объяснить, то по поводу темной энергии нет вообще ничего. Некоторые правда полагают, что это пятая фундаментальная сила – квинтэссенция.

Однако, известные свойства темной энергии согласуются с космологической константой, созданной Альбертом Эйнштейном в общей теории относительности. Константа выступает отталкивающей силой, противодействующей гравитации и удерживающей пространство от разрушения. Позже Эйнштейн отказался от нее, потому что наблюдения выявили процесс расширения Вселенной (она рассчитывалась для статичной).

Но, если сейчас добавить темную энергию в качестве константы для ускорения расширения Вселенной, то может объяснить этот процесс. Но все это так и не дает понимания того, почему эта странная сила вообще существует.

Источник

Читайте также:  Есть такая рыба вселенная

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector
Постоянная Хаббла