Нобелевская премия по физике 2008 года. Нобелевская асимметрия
Доктор физико- математических наук И. РОЙЗЕН (ФИАН).
Начнём с Йоичиро Намбу, поскольку он старший по возрасту и получил «львиную долю» — половину всей премии.
Около полувека тому назад, задолго до появления в обиходе физиков слова «кварк», Намбу совместно с итальянским физиком Джованни Йона-Лазиньо высказали гипотезу относительно глубинных причин, управляющих «устройством» и свойствами казавшегося довольно сумбурным «зоопарка» адронов, каковых в то время было уже известно несколько десятков. Опираясь на аналогию со сверхпроводимостью, которой Намбу занимался до этого, они построили весьма своеобразную модель сильного взаимодействия этих частиц. Её основными объектами были не хорошо известные нуклоны — протоны и нейтроны, а некие гипотетические, очень лёгкие частицы, которых в природе не оказалось (роль, которую они играли в этой модели, впоследствии взяли на себя кварки); мезонов же в теории изначально не было вообще. Но, пожалуй, самое главное, что вакуум перестал играть роль «стороннего наблюдателя» за распространением частиц, а превратился в активного участника процесса.
Математически это выглядело как появление новой симметрии — так называемой киральной, которая спонтанно нарушалась, а физически, как и в случае сверхпроводимости, было проявлением того общего положения, что система фермионов с притяжением между частицами не вполне устойчива. Именно эта неустойчивость привела к образованию конденсата — когерентного состояния сильновзаимодействующих частиц, минимизирующего энергию системы, подобно тому как это делают куперовские пары в сверхпроводниках (см. «Наука и жизнь» № 2, 2004 г.).
Что такое спонтанное нарушение (любой) симметрии, поясним на примере. Всем известный буриданов осёл, стоя посередине между двумя стогами сена, долго не мог решить, к какому из них направиться. Пока дело обстоит таким образом, картина вполне симметрична. Но, в конечном счёте, он всё же должен пойти к одному из них — не умирать же ему с голоду. Выбор совершенно случаен (спонтанен), но как только осёл сделал первое телодвижение, запах вожделенной еды, исходящий от ставшего чуть ближе стога, стал немного сильнее, и, стало быть, назад он уже не пойдёт. Таким образом, не остаётся никаких шансов на дальнейшее удержание симметрии. А вот другой, менее курьёзный пример. Представим себе, что маленький теннисный мячик лежит на слабо накачанном закреплённом баскетбольном мяче, продавив ямку в его верхней точке. Очевидно, что такая конфигурация абсолютно симметрична относительно вертикальной оси, проходящей через центры обоих мячей. Станем накачивать баскетбольный мяч. Как только вогнутость в его верхней точке исчезнет, теннисный мячик немедленно скатится вниз (и в непредсказуемом направлении). Заметим, что в ходе этого эксперимента мы не совершали никакого асимметричного воздействия на систему, но тем не менее симметрия нарушилась и притом необратимо.
В результате нарушения киральной симметрии в модели Намбу—Йона-Лазиньо возникали мезоны, а фермионы приобретали значительную массу и становились более похожими на нуклоны. Эта модель не была вполне последовательной, но она во многом предвосхитила появление через 10 лет настоящей теории сильных взаимодействий — квантовой хромодинамики, которой органически присуще спонтанное нарушение киральной симметрии.
Стоит отметить также и то, что спустя несколько лет (в 1965 году), когда уже стало понятно, что адроны состоят из кварков, Намбу вместе с Ханом были первыми, кто показал, что кварки взаимодействуют посредством восьми векторных частиц (то есть со спином 1), которые позднее назвали глюонами. Таким образом, Намбу стал одним из авторов представления о «цвете» кварков. «Цвет» — это присущее кваркам (и глюонам) квантовое число, которое не имеет ничего общего с расхожим представлением о цвете. Подобно электрическому, цветовые заряды характеризуют кварки и взаимодействия между ними. Сам по себе это был фундаментальный результат вполне нобелевского класса.
Кобаяши и Маскава поделили вторую половину премии. Их вклад в современную физику связан с двумя другими симметриями — пространственной и зарядовой. Смысл первой иллюстрируется картиной, которая получается при отражении предмета в зеркале. Оно может быть либо тождественно самому предмету — например, отражение букв О или Ф, либо нет — например, отражение буквы И.
В мире микрочастиц всё сложнее: там лучше говорить не о симметрии, а о чётности волновой функции, которая описывает физическую систему. Ясно, что в результате двукратного отражения ничего измениться не должно, но при каждом отражении эта функция, вообще говоря, может поменять знак на противоположный. Если этого не происходит, состояние называют чётным, в противном случае — нечётным. Возможность того, что при слабых взаимодействиях пространственная («зеркальная») чётность может изменяться, была предсказана в 1956 году американскими физиками Ли Цзундао и Янг Чженьнин, а спустя год американский физик Ву Цзяньсюн экспериментально обнаружила, что такой эффект действительно имеет место: до взаимодействия состояние может быть чётным, а после него стать нечётным, и наоборот. Вскоре после этого советский физик Л. Д. Ландау сформулировал гипотезу, согласно которой при любых взаимодействиях должна сохраняться комбинированная чётность — волновая функция не меняет знак при зеркальном отражении (Р) и одновременной замене частиц античастицами (последнюю операцию называют зарядовым сопряжением и обозначают буквой С). Гипотезу назвали СР-инвариантностью. Долгое время её считали таким же незыблемым законом сохранения, как, скажем, закон сохранения энергии, которому подчиняются все процессы. Но в 1964 году был обнаружен редкий распад долгоживущего нейтрального К-мезона, свидетельствующий, что это не так. А. Д. Сахаров сразу же отметил, что именно невыполнение СР-инвариантности на ранних стадиях образования горячей Вселенной могло привести к её барионной асимметрии — преобладанию вещества над антивеществом. Тогда всё сущее, в том числе, конечно, и мы сами, порождено нарушенной симметрией.
Оставалось, однако, непонятным, как нарушение СР-инвариантности «втиснуть» в рамки бытовавших в то время теоретических представлений. Дело в том, что тогда ещё только-только была предложена (американцами М. Гелл-Манном и Дж. Цвейгом) систематизация упоминавшегося выше «зоопарка» адронов, основанная на представлении, что они состоят из кварков трёх типов — u, d и s и соответствующих антикварков. Но нарушению СР-инвариантности там места не было.
И тогда Кобаяши и Маскава обратили внимание на то обстоятельство, что несохранение СР-чётности можно описать весьма непринуждённо, если кроме упомянутых выше имеются как минимум ещё три кварка. Говоря точнее, если в природе существует не менее трёх поколений кварков.
Их догадка блестяще подтвердилась, теперь мы знаем, что три поколения — это пары (ud)-, (cs)- и (tb)-кварков, которые, однако, «смешиваются» друг с другом. (Последний, тяжёлый t-кварк третьего поколения, «поймали» в Национальной ускорительной лаборатории им. Энрико Ферми (Чикаго, США) в 1994 году — см. «Наука и жизнь» № 8, 1994 г.).
Под этим понимается, что слабое взаимодействие способно вызывать переходы внутри троек uct (их электрические заряды равны +2/3) и dsb (электрические заряды –1/3) соответственно. Более того, выяснилось, что при распадах нейтральных B-мезонов СР-чётность нарушается намного сильнее, чем в аналогичных процессах с участием К-мезонов, о которых упоминалось выше.
В заключение заметим, что во всей этой захватывающей физике микромира ещё далеко не всё понятно. По существу, пока мы не знаем самого главного: в чём причина нарушения симметрии в слабых взаимодействиях? Дальнейшее тесно связано со свойствами хиггсовского бозона, существование которого предсказывается так называемой стандартной моделью (см. «Наука и жизнь» № 8, 1994 г.). Если это предсказание верно, то он, несомненно, будет открыт на запущенном недавно в ЦЕРНе Большом адронном коллайдере (LHC). Если же выяснится, что его нет, это будет означать, что глубинную структуру материи мы понимаем в действительности намного хуже, чем кажется сейчас.
Словарик к статье
Адроны (от греч. hadros — большой, сильный) — класс элементарных частиц, участвующих в сильном взаимодействии (одном из четырёх фундаментальных), которое создаёт прочную связь нуклонов в ядре, а при столкновении частиц высокой энергии приводит к ядерным реакциям.
Киральная симметрия (от греч. cheir — рука) — инвариантность уравнений квантовой теории поля относительно преобразований, перемешивающих состояния частиц как с различными электрическими зарядами, так и с разной внутренней чётностью. Это глобальная симметрия — она не зависит от координат пространства-времени. Киральная симметрия скомбинирована из двух различных симметрий, одна из которых — симметрия взаимодействия адронов относительно преобразований в группе частиц с очень похожими свойствами (в так называемом изотопическом пространстве), другая — так называемая внутренняя чётность, которая характеризует поведение волновой функции частицы при инверсии пространственных координат. Нарушение киральной симметрии приводит к появлению связанных фермионов, подобно куперовским парам в сверхпроводниках.
Когерентность — согласованное протекание во времени и в пространстве нескольких колебательных или волновых процессов.
Мезоны (от греч. mesos — средний, промежуточный) — нестабильные элементарные частицы из класса адронов. Существует множество мезонов с самой разной массой, временем жизни, квантовыми характеристиками, заряженных и нейтральных. Все мезоны состоят из кварка и антикварка.
Фермионы — частицы, подчиняющиеся принципу Паули: два фермиона не могут одновременно находиться в одном квантовом состоянии. К фермионам относятся нуклоны, нейтрино, кварки и другие частицы с полуцелым спином. Названы в честь Э. Ферми, который одновременно с П. Дираком исследовал их свойства.
Бозоны — частицы с нулевым или целым спином. В отличие от фермионов в одном квантовом состоянии может находиться любое количество бозонов. Названы в честь Д. Бозе и А. Эйнштейна, рассмотревших их свойства.
Кварки — по современным представлениям, шесть «истинно элементарных», то есть бесструктурных частиц, из которых состоят адроны.
Глюоны (от англ. glue — клей) — электрически нейтральные частицы, которые реализуют сильное взаимодействие между кварками. В отличие от нейтральных фотонов — переносчиков электромагнитного взаимодействия — глюоны несут цветовой заряд и поэтому непосредственно взаимодействуют между собой.
Барионы (от греч. barys — тяжёлый) — элементарные частицы, к которым относятся протон, нейтрон и другие, обладающие специфическим барионным зарядом. Барионы участвуют во всех фундаментальных взаимодействиях — сильном, слабом, электромагнитном и гравитационном. Во всех известных сейчас экспериментах полный барионный заряд сохраняется (частицы рождаются или уничтожаются только парами: барион + антибарион), однако нарушение СР-чётности в слабых взаимодействиях могло бы послужить причиной появления избытка барионов в очень ранней Вселенной.
Барионный заряд — внутренняя характеристика частиц, равная 1 у барионов, –1 у антибарионов и 0 у всех остальных частиц. Свободные частицы имеют барионные заряды, кратные барионному заряду протона; кварки, которые в свободном виде не встречаются, а по трое составляют протоны и нейтроны, имеют барионный заряд 1/3, антикварки – 1/3.
Читайте в любое время
о )— они всегда рождаются парами. Эти сравнительно долгоживущие частицы успевают пролететь почти 0,5 мм, прежде чем распасться на более лёгкие частицы. В одном из каналов распада образуются K- и π-мезоны: в первом случае это K + и π – , а во втором — K – и π + . Очевидно, что эти реакции получаются одна из другой посредством СР-преобразования. Поэтому СР-симметрия требует того, чтобы число тех и других было одинаково. Но оказалось, что первый распад происходит примерно на 10 процентов чаще.
Источник
Доказательство суперсимметрии полностью изменит наше понимание Вселенной
Большой адронный коллайдер очень скоро снова заработает с удвоенной скоростью. Физики полагают, что столкновения частиц на околосветовых скоростях помогут раскрыть целый набор новых частиц, открывающих изнанку физики: суперсимметрию. В прошлый раз мы немного затронули эту тему, пришло время обсудить, что это за суперсимметрия и зачем она нам.
На данный момент главенствующей теорией физики элементарных частиц является Стандартная модель. Она отлично объясняет, как взаимодействуют основные строительные блоки материи, создавая Вселенную, которую мы видим вокруг.
Стандартная модель — лучшее описание, которое у нас есть, но оно далеко от совершенства.
Неполная теория
Стандартная модель образовалась в 1970-х годах. Это набор уравнений, который описывает, как все известные элементарные частицы взаимодействуют с четырьмя фундаментальными силами: сильным и слабым взаимодействием, электромагнетизмом и гравитацией.
«Есть некоторые вещи, которых Стандартная модель не может объяснить, — говорит физик Джордж Редлинджер из Брукхейвенской лаборатории, которая работает над экспериментом ATLAS на БАК. — Потому мы знаем, что это неполная теория».
Стандартная модель отлично связывает первые три из этих четырех фундаментальных сил, но не касается гравитации. Гравитация настолько слабая сила, что даже игрушечный магнит может ее побороть. Остальные три силы намного сильнее. Гравитация имеет крайне важное значение для физики, и ее поведение описывает общая теория относительности Эйнштейна.
Стандартная модель также не может объяснить присутствие таинственного вещества под названием темная материя, которое удерживает галактики вместе. И не может объяснить, почему во Вселенной намного больше материи, чем антиматерии, хотя должно быть равное количество.
Суперсимметрия — это расширение Стандартной модели, которое могло бы помочь заполнить некоторые из этих недостатков. Она прогнозирует, что каждая частица в Стандартной модели может обладать пока не обнаруженным партнером. Это касается даже знакомых нам частиц вроде электронов. Суперсимметрия предсказывает, что у электронов есть партнеры «селектроны», у фотонов — «фотино» и так далее.
Вот все пробелы в физике, которые может исправить суперсимметрия.
Суперсимметрия может объяснить, почему бозон Хиггса такой легкий
Несмотря на то, что Стандартная модель предсказала существование бозона Хиггса, его обнаружение проделало еще одну трещину в теории. Хиггс, который физики наблюдали на БАК в 2012 году, намного легче, чем ожидалось. Стандартная модель предсказывает, что бозон Хиггса в триллионы раз тяжелее, чем тот, что наблюдали физики во время первого запуска БАК, как говорит Дон Линкольн, физик из Лаборатории Ферми.
Будучи частицей, которая дает массу другим частицам, Хиггс должен быть очень тяжелым, поскольку взаимодействует с огромным числом частиц. Частицы-партнеры, предсказываемые суперсимметрией, могли бы поправить это. Если они существуют, эти дополнительные частицы отменяли бы вклад партнеров в массу Хиггса. Потому бозон Хиггса был бы легким, как мы его и наблюдали.
Это естественное объяснение куда более желательно, чем внесение корректировок в существующую Стандартную модель. Когда вы вынуждены править теории, объясняющие то, что вы в действительности наблюдаете, это знак того, что «вы на самом деле не знаете, что делаете», говорит Линкольн, а эта теория, по всей видимости, неправильная или неполная.
Частицы Стандартной модели во внутреннем круге; суперсимметричные партнеры — во внешнем
Суперсимметрия может объяснить темную материю
Темная материя невидима и до сих пор не обнаружена, но тем не менее на нее приходится до 27% всей материи во вселенной.
Самые легкие суперсимметричные частицы, предсказываемые в рамках теории, могут быть неуловимыми частицами темной материи, на которые охотятся физики десятилетиями. Суперсимметрия предсказывает, что у этой частицы будет нейтральный заряд и она едва ли будет взаимодействовать с любой другой частицей. Примерно такое описание физики ждут от частиц темной материи.
Темная материя невидима, поэтому частицы, из которых она состоит, должны быть нейтральными, иначе будут рассеивать свет и станут видимыми. Эти частицы также ни с чем не взаимодействуют, иначе мы бы их уже обнаружили.
Суперсимметрия указала бы в направлении универсальной теории в физике
Главная цель физики — постоянно конденсировать наше понимание вселенной все более простыми терминами.
К примеру, теперь мы понимаем, что гравитация, которая привела к падению яблока на голову Ньютона, — это та же гравитация, которая управляет планетами и звездами. И теперь мы знаем, что законы электричества и законы магнетизма — просто два закона, которые определяют единую фундаментальную силу электромагнетизма.
Если суперсимметричные частицы включены в Стандартную модель, они бы тесно связали три из четырех фундаментальных сил, которые описываются Стандартной моделью: электромагнетизм, сильное и слабое взаимодействие. Суперсимметрия будет означать, что все эти три силы будут обладать одной и той же силой на очень высоких энергетических уровнях.
Многомерное пространство Калаби-Яу
В частности, суперсимметрия может укрепить теорию струн. Суперсимметрия часто описывается как трамплин для теории струн — чтобы она стала возможной, необходима некоторая версия суперсимметрии.
Теория струн остается одним из ведущих кандидатов на «теорию всего», которая объединит всю физику. Тем не менее проверить ее экспериментально чрезвычайно трудно.
«Энергия структур, с которыми имеет дело теория струн, настолько высока, что мы, вероятно, никогда не воспроизведем ее в лаборатории», — говорит Стивен Вайнберг.
Тем не менее открытие суперсимметрии по крайней мере даст апологетам теории струн знать, что они идут в правильном направлении.
Как разлетаются бозоны
Физики думают, что мы найдем доказательства суперсимметрии?
Несмотря на десятилетия поисков, никто не нашел никаких доказательств суперсимметрии. Впрочем, великие теории открывались не за два-три года. К примеру, почти полвека понадобилось на то, чтобы открыть бозон Хиггса с момента теоретического предположения его существования. Потому, хотя мы и не видим доказательств суперсимметрии, эта теория остается очень мощной.
«Это настолько прекрасная идея, что она обязана быть правильной», — говорит Редлинджер.
Тем не менее Вселенной абсолютно все равно, насколько идеальными наши теории ни казались бы, говорит Линкольн. Многие физики говорят, что мы должны были найти доказательства суперсимметричных частиц уже в первый запуск БАК, поэтому теория вполне может быть не ахти.
Но только потому, что мы не видели каких-либо суперсимметричных частиц, еще не означает, что их нет. Может быть, есть что-то в том, как суперсимметрия проявляется, чего мы пока не понимаем. Может, нужен более мощный коллайдер, чтобы частицы-суперпартнеры проявили себя.
Мы не узнаем этого, пока БАК не заработает. Обновленный ускоритель частиц будет работать на 60% сильнее, чем раньше, перейдет от 360 миллионов столкновений в секунду до 700 миллионов столкновений в секунду. Если суперсимметрия была вне досягаемости по уровню энергии во время последнего запуска, данные этого года могут быть совершенно неописуемыми.
Конечно, мы можем ничего и не найти. Но это тоже пойдет нам на пользу.
Если суперсимметрия ошибочна, это откроет дверь к новому набору теорий. Также появится больше доверия к другим теориям, вроде идеи о мультивселенной, к которой никогда не было особого доверия. Ждем запуска.
Источник