Меню

Свет получение от солнца

Из чего состоит солнечный свет?

Каждый день мы чувствуем на себе когда-то теплый и согревающий, когда-то бледный и, казалось бы, леденящий, а иногда яркий обжигающий солнечный свет. Он всегда ощущается по-разному, но какой эффект он оказывает на самом деле и что собой представляет?

Солнечный свет это — это доносящиеся до Земли электромагнитные волны, исходящие от Солнца. Благодаря этому гигантскому резервуару энергии зародилась жизнь и продолжает свою активность и доселе. Эта энергия передается в нескольких формах, но до нас доходят лишь часть из этого, изрядно прореженная и ослабленная атмосферой Земли. Если не углубляться в физику, сам свет состоит из ультрафиолетовых коротких волн (280-400 нм), привычного для нас видимого света средних волн (400-700 нм) и из длинных, инфракрасных волн (700 нм – 1мм). Кардинальное и определяющее различие между ними состоит в их способности проникать сквозь ткани и материалы, а также влиять на них.

Ультрафиолетовый свет (UV) — самый опасный вид солнечного излучения для человека. Он не может проникать так глубоко, как другие составляющие света, но может наносить сильный ущерб поверхностным слоям кожи человека. Это проявляется как в солнечных ожогах, ускорении старения кожи, и аллергических реакциях, так и в более серьезных проявлениях как, например, рак кожи и меланома. И это ещё с учетом того, что значительная часть ультрафиолета отсеивается атмосферой. Такой ущерб ультрафиолетовый свет наносит путем увеличения числа свободных радикалов (атомов или молекул с несколькими неспаренными электронами) в клетках кожи, которые повреждают ДНК или нарушают метаболические реакции.

Чтобы противодействовать этому, на данный момент разработано немало солнцезащитных гелей и мазей, которые хорошо справляются с ультрафиолетом, но, и это стоит подчеркнуть, практически никак не мешают воздействию на кожу и тело других спектров света. Эту задачу, однако, выполняет другое средство защиты от этого агрессора — поддержание диеты с достаточным количеством антиоксидантов, которые будут противодействовать генерированию свободных радикалов. В небольших количествах же UV приносит больше пользы, чем вреда, так как способствует естественному производству витамина D в организме.

Второй кусок волнового спектра — видимый свет. Он нам очень хорошо знаком, потому что именно из этого белого пучка и рождается известное нам освещение во всем многообразии его палитры и оттенков. Примитивные формы цветов, а конкретнее — фиолетовый (400 нм), синий (425 нм), голубой (470 нм), зеленый (550 нм), жёлтый (600 нм), оранжевый (630 нм) и красный (665 нм), вместе и выглядят как белый свет, являются его составным частями, находящимися в разных частях волнового спектра, а при определенных условиях, как вы уже догадались, могут материализовываться в виде радуги. Сочетание этих базовых цветов в совокупности с параллельным изменением других параметров, таких как интенсивность света и её распределение по спектру белого, а также светлость цвета, отражающие качества материала, фоновые цвета и т.д. образуют эту безумную, визуально насыщенную картину нашего мира.

Интересно, что именно видимым спектром, в основном, питаются растения, и поэтому они эволюционно к нему больше всего приспособлены. Тем не менее, нельзя сказать, что видимый свет только полезен, он может воздействовать на объекты примерно также, как и другие два компонента солнечного излучения, только в более умеренной форме. Исключением может быть его влияние на зрение человека, так как глаза человека особо к нему чувствительны, и потому высокоинтенсивный, мигающий или резкий видимый свет гораздо чаще других вариантов на практике приводит к повреждению зрительного аппарата человека.

И последний тип света — инфракрасный (IR). Из всех перечисленных он может проникать глубже всего в тело человека, достигая костей и других глубинных тканей, и влияя даже на внутренние процессы в организме. Однако, в отличие от ультрафиолетового света, инфракрасный свет не вызывает . далее

Понравилась статья? Ставьте лайки и подписывайтесь на наш журнал «ХИМАГРЕГАТЫ» в Яндекс ДЗЕН, чтобы получать статьи у себя в ленте!

Источник

Читайте также:  Как лечить дерматит от солнца

Культура и наука

 21 6789 20:27 27.10.2013 Рейтинг темы: +1

Солнце дало жизнь нашей Планете. Благодаря Солнечному свету существуют растения, а значит и животные с людьми.
Давайте ответим на вопрос — что такое Солнечный свет? Из чего он состоит и каким образом попадает от Солнца на Землю?
Учёные выяснили, что свет состоит из элементарных частиц, с примерно одинаковыми характеристиками. Они называли эти частицы — фотонами. Мы же с вами пойдём дальше. Мы узнаем из чего состоят фотоны, каким образом возникают. Сегодня мы с вами приоткроем завесу над одной из самых интересных загадок природы — каким образом свет передаётся от Солнца к Земле!
Итак, что такое свет? Видимый человеческим глазом свет — это фотоны, образованные излучением с длиной волны от 380 нм до 740 нм и частотой от 405Тгц до 790Тгц. Электромагнитной волной учёные, условно назвали, колебание максимумов и минимумов. То есть, электромагнитная волна — это изменение свойства пространства с определённой частотой, на определённую величину. Когда мы говорим, о длине световой волны в 555 нм. — мы имеем ввиду изменение характеристик пространства на 555 условных единиц. Когда мы говорим о частоте световой волны в 777 Тгц. — мы имеем ввиду изменение свойства пространства 777 раз за условную единицу времени.
Как же образуется элементарная частица света и из чего она состоит? Рассмотрим появление фотона жёлтого цвета (длина волны — 580Нм, частота — 520Тгц). До Земли с Солнца доходят колебания свойства пространства в 580 условных единиц (Нм), которые происходят с частотой в 520 условных единиц (Тгц). В атмосфере Земли, по всей траектории распространения «волн», начинают формироваться сгустки материи жёлтого цвета — условно названные фотонами. Волна — это колебание максимумом и минимумов. На «максимуме» сгусток материи имеет максимальную плотность, на «минимуме» сгусток материи исчезает. Фотон жёлтого цвета исчезает и снова «материализуется» 520 раз за условную единицу времени. Человеческий глаз видит лишь 24 «кадра» в секунду. Поэтому мы с вами не видим появления и исчезания фотонов — вы видим просто ровный свет.
Фотоны света — это образующиеся и исчезающие, с определённой частотой, сгустки материи. Фотоны образуются при слиянии первичных материй (тёмной материи или эфира). При изменении в точке пространства её свойства на 580 условных единиц (Нм) — в ней начинают сливаться (соединяться) первичные материи и образуется «жёлтый» фотон. При обратном изменении свойств пространства, фотон распадается на первичные материи (тёмную материю, эфир).

ВНИМАТЕЛЬНО прочитав написанное выше, мы понимаем каким образом от Солнца до нашей Планеты «долетает» свет. Возникающие в центре Солнца колебания пространства, достигают нашей Планеты. И уже здесь, «на месте», по всем траекториям распространения Солнечного излучения, из первичных материй (тёмных материй, эфира) формируются фотоны света. То есть, фотоны никуда не летят! В пространстве распространяются лишь колебания самого пространства! А фотоны света образуются в конкретных точках пространства, по траекториям распространения Солнечного излучения (электромагнитных колебаний).
В пространстве, изменившим своё свойство, на короткий миг создаются условия для синтеза материи. Фотоны создаются, и тут же пропадают. Материя не успев появится, тут же распадается. Именно периодическую «материализацию» и распад — мы и называем фотоном, светом!

Источник

За какое всё-таки время свет достигает Земли от центра Солнца (с анимацией)

Примечание: анимация в конце статьи. Там всё понятно.

В Космосе видимый свет движется с постоянной скоростью 300 000 км/с. Значит на преодоление расстояния от поверхности Солнца до Земли фотонам потребуется всего лишь 8 минут 20 секунд. Казалось бы, немного. Только этим фотонам нужно еще добраться до поверхности звезды, так как рождаются они в самих недрах светила.

В ядре Солнца происходит непрерывная термоядерная реакция в результате синтеза атомов водорода с образованием атомов гелия и выделением энергии в виде фотонов.

Само ядро представляет собой термоядерный реактор, радиус которого равен 170 тысячам километров. А это четверть радиуса Солнца. Образовавшиеся в ядре фотоны изначально обладают высокой энергией в диапазоне гамма-излучения.

Покидая реактор, фотоны попадают сначала в зону лучистого переноса, а затем в конвективную зону Солнца. Но, чтобы достигнуть поверхности звезды, фотонам приходится сталкиваться с препятствиями.

В Солнце громадное количество нуклонов (протонов и нейтронов). Фотон, подобно пуле, ударяясь о нуклоны, мгновенно рикошетит, меняя свое направление. Тем самым фотоны, рождаясь, непроизвольно становятся участниками игры в «Пинбол».

При этом, при соударении фотоны отдают часть свой энергии частицам, из-за чего волна фотона постепенно удлиняется. Так фотоны со временем переходят в рентгеновское излучение, затем в ультрафиолет, а после, в видимое излучение или свет.

Сколько раз фотоны будут налетать на частицы, прежде чем наконец-то выберутся из солнечной ловушки?

Здесь возникает проблема Случайного блуждания . Ответ можно найти в самой формуле Случайного блуждания, где расстояние равно произведению длины шага на квадратный корень суммарного количества шагов.

Пример, представим, что слепой Петя решит самостоятельно добраться от дома до магазина, который полностью окружает дом на расстоянии 1 км. Длина шага равна 1 метру. Петя будет двигаться со скоростью 1 м/с. Из формулы Случайного блуждания получится, что Петя доберётся до магазина только через 11 дней, сделав миллион шагов.

Теперь возвращаемся в лабиринт светила. Нам известна масса Солнца. Значит мы можем определить примерное количество нуклонов. Химический состав светила: 75% водорода и 25% гелия. То есть приблизительным подсчётом, в Солнце содержится 1.2 * 10 в 57 степени нуклонов.

Если теоретически нуклоны равномерно распределить внутри звезды, то расстояние между ними или шаг составит 1 ангстрем (0.1 нанометра). Радиус Солнца равен 695 000 км. Из формулы Случайного блуждания получится, что фотон столкнётся с частицами 48 302 дециллиона раз.

Сколько времени понадобится фотону, чтобы выбраться из солнечного лабиринта?

Благодаря современному компьютерному моделированию точное время постепенно уточняется. В настоящее время компьютером подсчитано, что фотону потребуется 170 000 лет, чтобы проделать путь от недр Солнца до его поверхности. И только после этого, сквозь космическое пространство, он долетает до человеческой сетчатки глаза, через 8 минут 20 секунд.

Получается, что солнечный свет, который мы видим сегодня, прошёл весь путь ещё с того времени, когда появился только первый современный человек.

Источник

Как солнечная энергия преобразуется в электричество?

Первым шагом для преобразования солнечной энергии в электричество является установка фотоэлектрических (PV) ячеек или солнечных элементов. Фотоэлектричество означает свет и электричество. Эти клетки задерживают солнечную энергию и превращают ее в электричество. Эти солнечные элементы изготовлены из материалов, которые показывают фотогальванический эффект, то есть когда солнечные лучи ударяют по фотогальванической ячейке, фотоны света пугают электроны внутри ячейки, заставляя их начать течь, в конечном итоге производя электричество.Покупая солнечные батареи , было бы полезно знать варианты, доступные на рынке. Вот схема основных:

  • Поликристаллический — в нем используется многокристаллический кремний
  • Монокристаллический — идеально подходит для небольших помещений
  • Тонкая пленка — обычно более крупная по размеру и более эффективная в течение дня

Различие между материалом, используемым для производства монокристаллического и поликристаллического, заключается в создании кремниевой подложки, используемой для производства солнечных элементов и, в конечном счете, солнечных панелей. Как следует из названия, поликристаллический означает многочисленные кристаллы, а монокристаллический — монокристалл. Чем больше размеры кристаллов, тем эффективнее солнечные элементы, что объясняет, почему монокристаллические клетки обычно на 10-15% эффективнее поликристаллических кристаллов.

Как работают солнечные панели?

Панель солнечных батарей должна быть установлена ​​на открытой площадке, которая не засоряется деревьями или какой-либо установкой. Лучшая ставка — крыша. Затем он подключается к зданию через инвертор. Инвертор — это устройство, которое преобразует переменный ток (переменный ток) в постоянный (постоянный ток). Таким образом, в этом случае переменный ток представляет собой энергию, создаваемую солнечными батареями. Эта солнечная энергия преобразуется в переменную. Причина преобразования постоянного тока в переменный ток заключается в том, чтобы обеспечить использование энергии различными бытовыми приборами именно так, как вы питаете электронику с нормальным электричеством.

Соображения, которые следует учитывать перед установкой солнечных панелей

Прежде чем предпринимать какие-либо шаги для установки солнечных батарей в вашем доме, убедитесь, что солнечная энергия подходит вам и вашему дому. Затем убедитесь, что в вашем населенном пункте имеется достаточное количество солнечного света . Пригодность солнечной энергии значительно варьируется в зависимости от того, сколько солнца получает площадь. Если ваша область не получает достаточного солнечного света, инвестирование в солнечные батареи не будет лучшей причиной.Определив, что ваша область получает достаточный солнечный свет, убедитесь, что место для установки доступно . Мы узнали, что солнечные панели типично устанавливаются на крышах зданий. Хотя это похвально, это не единственный вариант. Если у вас есть свободное место на заднем дворе, это будет идеальное место для наземного крепления. Вариант заднего двора идеально подходит для тех, чьи крыши сильно затенены или не имеют структурной важности для солнечных панелей. Кроме того, важно знать местные законы, касающиеся установки солнечных батарей, чтобы избежать неприятностей с местными властями. Вы можете получить эту информацию от своего местного консультанта по солнечной энергии

Воздействие на окружающую среду

Хотя солнечная энергия считается одним из самых чистых и возобновляемых источников энергии среди доступных источников, но также имеет некоторые экологические последствия. Солнечная энергия использует фотогальванические элементы для получения солнечной энергии. Однако производство фотогальванических элементов для получения энергии требует кремния и производства некоторых отходов . Неправильное обращение с этими материалами может привести к опасному воздействию людей и окружающей среды. Для установки солнечных электростанций может потребоваться большой участок земли, который может повлиять на существующие экосистемы . Солнечная энергия не загрязняет воздух при преобразовании в электричество солнечными батареями. Он встречается в изобилии и не помогает в глобальном потеплении.

Будущее солнечной энергии

Прежде чем мы будем обсуждать будущее солнечной энергии, мы должны сначала поставить некоторые факты в перспективу:Изменение климата — это реальное явление и большая угроза для людей и других форм жизни на планете Земля.Если мы серьезно относимся к тому, чтобы риск наших детей нести основную тяжесть последствий изменения климата, мы должны занять первое место в минимизации темпов выбросов парниковых газов на 80% к началу 2050 года. Поскольку 60% глобальных выбросов результаты использования энергии, мы обязаны начинать технологии с низким уровнем выбросов углерода в огромных масштабах, начиная с сегодняшнего дня.Солнечная энергия является крупнейшим энергетическим ресурсом,Независимо от того, являются ли они возобновляемыми или нет, другие источники энергии, кроме геотермальных, ядерных и приливных, вытекают из солнечного света. Ископаемое топливо — это просто солнечная энергия, встроенная в течение десятилетий (с использованием остатков животных и растительной жизни) в качестве батарей. Волна и энергия ветра обязаны своим происхождением солнечной энергии. Среди источников энергии с низким уровнем выбросов углерода это просто ветер, солнечная энергия и, возможно, ядерная энергия, которая может обеспечить развертывание уровня тераватт (TW), необходимое для удовлетворения постоянно растущего спроса на энергию.Существует значительное увеличение солнечных фотоэлектрических технологий.Фотоэлектрические технологии расширяются быстрее, чем любые энергетические технологии. Емкость всех установленных фотоэлектрических устройств удваивается каждые 2 года с 2000 года, до 201 гигаватт-пиков (GWp) в 2014 году. Этот экспоненциальный рост не показывает признаков ослабления. Если быстрый рост фотогальванических технологий продолжится с такими экстраординарными темпами, солнечная энергия, без каких-либо сомнений, удовлетворит весь мировой спрос на энергию в течение следующего десятилетия.Тем не менее, будущее солнечной энергии — не что иное, как яркое, учитывая такие крупные экономики, как США, а Китай — миллиарды долларов на разработку и установку солнечных энергетических технологий. Кроме того, тот факт, что солнечная энергия является возобновляемым ресурсом, делает ее привлекательной для большинства правительств, которые уменьшают зависимость от ископаемых видов топлива.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector