Меню

Свободное падение луны ускорение свободного падения

Ускорение свободного падения на Земле и на Луне

Все тела притягиваются друг к другу — это закон всемирного тяготения. Силы, с которыми тела притягиваются вычисляются по формуле:

Здесь G — это гравитационная постоянная, равная 6,67 × 10 -11 Н · м 2 /кг 2 . Она численно равна силе, с которой одно тело массой 1 кг притягивает другое тело с массой 1 кг, находящееся от него на расстоянии 1 м. Как мы видим, это очень маленькая сила. Поэтому мы замечаем притяжение только к очень массивным телам, космического масштаба.

Если размеры одного тела несоизмеримо меньше размеров другого тела и оно находится на поверхности второго тела или на высоте намного меньше радиуса второго тела, то за расстояние между телами принимается радиус второго тела. (Притяжение всегда идет к центру тела.)

В результате действия закона всемирного тяготения планеты и другие космические тела притягивают к себе другие тела. Эта сила притяжения называется силой тяжести. Под ее действием падающим телам сообщается ускорение свободного падения (g). Сила тяжести вычисляется по формуле:

Подставим вместо F в первую формулу значение F из второй. При этом пусть m1 — это масса падающего на Землю тела. Обозначим ее как m. А m2 — это масса Земли. Обозначим ее как M. Тогда получим:

Разделим обе части формулы на m (массу падающего тела):

Мы видим, что ускорение свободного падения зависит от массы и радиуса планеты. Чем больше ее масса, тем сильнее она притягивает тела и тем больше на ней ускорение свободного падения. Чем больше радиус планеты, тем дальше от ее центра находится притягиваемое тело и тем меньше будет ускорение свободного падения.

Таким образом, чтобы сравнить ускорение свободного падения на Земле и Луне, надо сравнить отношения их масс к квадратам их радиусов. Но чтобы найти само ускорение свободного падения, надо еще умножить на гравитационную постоянную.

Масса Земли приблизительно равна 6 × 10 24 кг, а ее радиус приблизительно равен 6400 км (6,4 × 10 6 м). Поэтому ускорение свободного падения на Земле приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 6 × 1024 кг ÷ (6,4 × 106 м) 2 ≈ 0,977 × 10 1 ≈ 9,8 Н/кг (м/c 2 )

Масса Луны примерно равна 7,5 × 10 22 кг, а ее радиус примерно равен 1750 км. Поэтому ускорение свободного падения на Луне приблизительно будет равно:

g = 6,67 × 10 -11 Н × м 2 /кг 2 × 7,5 × 10 22 кг ÷ (1,75 × 10 6 м) 2 ≈ 16,335 10 -1 ≈ 1,6 Н/кг (м/с 2 )

Отношение ускорений свободного падения на Земле и Луне равно 9,8 : 1,6 ≈ 6 : 1. Значит, сила притяжения тела с массой m на Луне будет примерно в 6 раз меньше, чем на Земле.

Источник

Таблица Ускорение свободного падения на планетах солнечной системы

Ускорение свободного падения тел на Луне (естественный и единственный спутник планеты Земля) рассчитывается по формуле:

G — гравитационная постоянная, находится из закона всемирного тяготения и равна 6,67·10 -11 Н м 2 /кг 2
Mл — масса Луны;
Rл — радиус Луны.
Приведённая формула применима для расчёта ускорения свободного падения тела на планетах солнечной системы, в том числе и на планете Земля.

Насколько публикация полезна?

Нажмите на звезду, чтобы оценить!

Средняя оценка 4.2 / 5. Количество оценок: 6

Источник

Ускорение свободного падения

О чем эта статья:

Каникулы со смыслом в Skysmart для детей 4-17 лет

Сила тяготения

В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.

Формула силы тяготения согласно этому закону выглядит так:

Закон всемирного тяготения

F — сила тяготения [Н]

M — масса первого тела (часто планеты) [кг]

m — масса второго тела [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.

Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.

Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.

Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓

Ускорение свободного падения

Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.

Сила тяжести — сила, с которой Земля притягивает все тела.

Сила тяжести

F = mg

F — сила тяжести [Н]

m — масса тела [кг]

g — ускорение свободного падения [м/с 2 ]

На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉

На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.

Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.

Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.

Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.

На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.

Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:

Читайте также:  Луна растущая что лучше для бизнеса

Приравниваем правые части:

Делим на массу левую и правую части:

Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.

Формула ускорения свободного падения

g — ускорение свободного падения [м/с 2 ]

M — масса планеты [кг]

R — расстояние между телами [м]

G — гравитационная постоянная

G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2

Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.

Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.

Ускорение свободного падения на разных планетах

Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.

Для этого нам понадобятся следующие величины:

  • Гравитационная постоянная
    G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
  • Масса Земли
    M = 5,97 × 10 24 кг
  • Радиус Земли
    R = 6371 км

Подставим значения в формулу:

Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .

И кому же верить?

Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .

Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.

Небесное тело

Ускорение свободного падения, м/с 2

Диаметр, км

Расстояние до Солнца, миллионы км

Масса, кг

Соотношение с массой Земли

Источник

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Же»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и сил инерции, вызванных её вращением, за исключением кориолисовых сил инерции [1] . В соответствии со вторым законом Ньютона, ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Значение ускорения свободного падения на поверхности Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с² [2] , а в технических расчётах обычно принимают g = 9,81 м/с² .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [3] . Оно может быть вычислено (в м/с²) по эмпирической формуле:

где — широта рассматриваемого места, — высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Читайте также:  Масса искусственного спутника луны

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h , км g, м/с 2 h , км g, м/с 2
9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736·10 24 кг , радиус R = 6,371·10 6 м ), мы получим

м/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

  • центробежным ускорением, которое присутствует в системе отсчёта, связанной с вращающейся Землёй [5] ;
  • отличием формы Земли от шарообразной (см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям (гравиразведка).
Ускорение свободного падения для некоторых городов

Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

«Же» используется в космонавтике, авиации, автоспорте, а также вообще в технике как единица измерения перегрузок — увеличения веса тела, вызванного его движением с ускорением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 g [источник не указан 69 дней] . Обычный человек может выдерживать перегрузки до 5 g [источник не указан 769 дней] . Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при −2. -3 g в глазах «краснеет» и человек тяжелее переносит такую перегрузку из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0 g , но в таблице ниже этот же случай рассматривается как перегрузка в 1 g . Похожий казус происходит также и при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник