Температура внутри и на поверхности Солнца в градусах по Цельсию
Солнце является сферой в основе Солнечной системы, состоящей из плазмы и газа. Около 91% газа представляет собой водород, за которым следует гелий. Солнце служит самым важным источником энергии для всех живых организмов на Земле. На него приходится 99,86% от общей массы Солнечной системы. Это самое яркое космическое тело, наблюдаемое на небе Земли, и температура Солнца сильно варьируется от ядра к поверхности звезды.
Ядро Солнца
В ядре Солнца гравитационное притяжение приводит к огромным температурам и давлению. Температура здесь может достигать 15 миллионов градусов по Цельсию. Атомы водорода в этой области сжимаются, и сливаются вместе для получения гелия в процессе, называемом ядерным синтезом. Ядерный синтез вырабатывает огромное количество энергии, которая излучается к поверхности Солнца и в впоследствии достигает Земли. Энергия от ядра проникает в конвективную зону.
Конвективная зона
Эта зона простирается на 200 000 км и приближается к поверхности. Температура в этой зоне опускается ниже 2 миллионов градусов Цельсия. Плотность плазмы достаточно низка, чтобы создать конвективные токи и транспортировать энергию к поверхности Солнца. Тепловые колонны зоны создают отпечаток на поверхности Солнца, придавая ему гранулированный вид, называемый супергрануляцией в самом большом масштабе и грануляцией в наименьшем масштабе.
Фотосфера
Фотосфера — это внешняя излучающая оболочка Солнца. Большая часть энергии этого слоя полностью вытекает из Солнца. Толщина слоя составляет от десятков до сотен километров, а солнечные пятна на нем темнее и прохладнее, чем окружающий регион. В основе больших солнечных пятен температура может составлять 4 000 градусов Цельсия. Общая температура фотосферы составляет приблизительно 5 500 градусов Цельсия. Энергия Солнца обнаруживается как видимый свет в фотосфере.
Хромосфера
Хромосфера является одним из трех основных слоев атмосферы Солнца и имеет толщину от 3000 до 5000 км. Она расположена прямо над фотосферой. Хромосфера обычно не видна, если нет полного затмения, в течение которого ее красноватый свет окружает лунный диск. Слой обычно не наблюдается без специального оборудования из-за яркости фотосферы. Средняя температура хромосферы составляет около 4 320 градусов по Цельсию.
Корона
Корона простирается на миллионы километров в космос и, как хромосфера, легко видна во время затмения. Температура короны может достигать 2 миллионов градусов Цельсия, и именно эти высокие температуры придают ей уникальные спектральные особенности. Когда она остывает, теряя как радиацию, так и тепло, вещество сдувается в виде солнечного ветра.
Важность энергии Солнца
Солнечная энергия позволяет растениям в процессе фотосинтеза вырабатывать собственную пищу, которая, в свою очередь, потребляется другими живыми существами. Солнечный свет дает зрение и нагревает воду. Он необходим для образования угля и нефтепродуктов, а также является важным фактором в формировании витамина D, который незаменим для роста костей в организме человека.
Источник
Какая температура Солнца
Космическое пространство содержит огромное количество звёзд с разными характеристиками. Для землян самым основным светилом является Солнце. Оно даёт энергию, греет и радует душу. Но какова температура Солнца? Ответ на этот вопрос будет изучен в статье.
Интересные факты
В составе звезды присутствуют следующие элементы:
- водород в количестве 70%;
- гелий в содержании 28%;
- металлические вещества и соединения – 2%.
Если бы этой звезды не существовало, жизни на Земле не было бы и не могло бы быть. Наши предки осознавали, насколько их жизнь зависит от «поведения» светила, поэтому нередко поклонялись ему и сравнивали его с божеством. С тех пор это стало существенным поводом для того, чтобы начать детальное изучение этого «огненного шара».
Изображение поверхности и короны Солнца, полученное Солнечным оптическим телескопом (SOT) на борту спутника Hinode. Получено 12 января 2007 года.
Многочисленные исследования, проведённые в научном мире, позволяют современным изыскателям заглянуть в далёкое прошлое. Возраст Солнца составляет 5 млрд. лет. Есть мнение, что спустя 4 млрд. лет его свечение станет более ярким, нежели сегодня. Науке также известен термин «солнечный цикл», которым характеризует минимальную и максимальную активность звезды Солнечной системы. В рамках нескольких последних циклов этот показатель увеличился на 0,1%.
О температурных значениях
Температура Солнца, особенно в центральной части звезды, является крайне высокой. Её значение составляет 14 млрд. градусов. Дело в том, что в ядерной части светила наблюдаются существенные термические реакции, при которых происходит деление ядер в условиях повышенного давления. Это провоцирует выделение одного ядра и вместе с ним огромного количества энергии.
Если изучать вопрос, какая температура на Солнце, с логической точки зрения, по мере углубления она должна становиться всё больше и больше, и происходит это резко. Однако определить точные показатели можно только в теории. Если рассматривать эти колебания послойно, можно сделать следующие отметки:
- корона имеет среднюю температуру, составляющую 1 500 000 градусов;
- ядро является наиболее «горячим», приблизительный показатель у его основания составляет 15 500 000 градусов по Цельсию;
- поверхность около 5 500° С.
Но это неточный ответ на вопрос, какая температура на Солнце. Дело в том, что в настоящее время большое количество учёных из разных стран мира занимаются проведением исследований, в отношении определения строения светила. В земных условиях они не прекращают попыток формирования явления термоядерного синтеза для получения информации о поведении плазмы в естественных условиях.
Снимок Солнца 9 апреля 2013 года. Иллюстрация NASA/SDO.
Атмосферные особенности
Относительно невысокая в сравнении с ядром и короной температура на поверхности Солнца вызывает ещё больше вопросов, нежели ответов. Есть ли у звезды атмосфера? И каковы её условия?
На самом деле, толщина этого слоя составляет 500 км и именуется как фотосфера. В ней регулярно происходят конвекционные процессы. Вследствие их течения тепловые потоки постепенно переходят в фотосферу из самых низких ярусов. Солнце способно вращаться, но делает это не так, как любая другая планета, обращающаяся вокруг него. Оно является нетвёрдым, что создаёт определённые особенности его вращения. Аналогичные траектории и эффекты можно наблюдать у газовых гигантов.
Условия в фотосфере
Изучая вопрос, какая температура на поверхности Солнца, стоит изучить данный аспект. В фотосфере её среднее значение приравнивается к отметке 5,5 тыс. градусов по Цельсию. В таких условиях радиация превращается в видимый свет. Что касается пятен, они являются более холодными и тёмными, нежели в области, которая их окружает. В центральной части температурный режим может становиться более «щадящим», т. е. опускаться на несколько тысяч единиц.
Условия в хромосфере
Температура Солнца в градусах присутствует и в области хромосферы. Она представляет собой следующий атмосферный уровень, который считается более холодным и имеет температурный показатель в 4320 градусов. В связи с тем, что она включает в состав внушительное количество водорода, с виду кажется красной. Повышение температуры происходит в короне, которая может быть обнаружена при затмении, во время протекания плазмы наверх.
Показатель мощности Солнца составляет 386 млрд. мегаватт. Ежесекундно, даже в течение каждой секундной доли происходит превращение водорода в гелий и энергию (гамма-лучи). Наряду с этим происходит испускание потока низкой плотности, который именуется солнечным ветром и распространяется по всем сопровождающим Солнце планетам на скоростном режиме в 450 километров в секунду. В итоге потоки текут в космос и направляются, в том числе, в сторону Земли.
Таким образом, в статье было рассмотрено, какая температура Солнца в градусах в разных его частях и в основных атмосферных слоях.
Источник
Что такое Солнце — описание, структура, образование, эволюция, орбита, исследование и факты
Солнце является основным источником энергии для Земли и всей Солнечной системы. Без него жизнь на нашей планете была бы невозможна. Неслучайно у многих древнейших цивилизаций (например, у египтян) именно бог Солнца считался верховным божеством, которому все остальные Боги были подчинены. Однако современная наука может рассказать о нашем светиле значительно больше, чем древнеегипетские мифы. Какие процессы протекают внутри Солнца, какова история этой звезды, и какое будущее ожидает ее через миллиарды лет?
Общая характеристика
Солнце – это огромный разогретый шар из газа, чей диаметр оценивается в 1,392 млн км. Это в 109 раз больше диаметра нашей планеты. На звезду приходится 99,87% всей массы Солнечной системы.
С Земли кажется, что светило имеет желтый цвет, однако это иллюзия, связанная с влиянием атмосферы нашей планеты на солнечный свет. На самом деле Солнце излучает почти белый свет.
Солнце – это одна из сотен миллиардов звезд галактики Млечный путь. Ближайшая к Солнцу звезда – это Проксима Центавра, находящаяся от неё на расстоянии 4,24 световых лет. Для сравнения – расстояние от Земли до Солнца, принимаемое за астрономическую единицу (а.е.), солнечный свет проходит всего за 8,32 минут.
По астрономической классификации Солнце относится к типу «желтых карликов». Это значит, что оно не так и велико по сравнению с размерами других звезд, но довольно ярко светит. Наше светило входит 15% самых ярких звезд Млечного Пути. Вместе с тем в галактике есть звезды, чей радиус превышает солнечный в 2000 раз!
Источником тепла, излучаемого звездой, являются термоядерные реакции. В центре Солнца атомы водорода сливаются друг с другом, в результате чего образуется атом гелия и некоторое количество энергии. Это реакция называется протон-протонным циклом, на него приходится порядка 98% энергии, вырабатываемой светилом. Однако имеют место и иные реакции, в ходе которых «сгорают» такие элементы, как гелий, углерод, кислород, неон и кремний, а образуются металлы (железо, магний, кальций, никель) и другие элементы (сера). Все эти процессы называют звездным нуклеосинтезом.
Влияние Солнца на окружающие небесные тела огромно. Солнечный ветер (частицы вещества, излучаемого звездой), доминируют в межпланетном пространстве на расстоянии до 100-150 а.е. от светила. Считается, что гравитация нашей звезды определяет орбиты тел, находящихся даже на расстоянии светового года от неё (в облаке Оорта).
Само Солнце также вращается вокруг своей оси. Так как оно состоит из газов, то разные его слои вращаются с разной угловой скоростью. Если в районе экватора период обращения составляет 25 дней, то на полюсах он увеличивается до 34 дней. Более того, последние исследования показывают, что внутренние области совершают оборот значительно быстрее, чем внешняя оболочка.
Таблица «Основные физические характеристики Солнца»
Средний диаметр | 1 392 000 км |
Длина экватора | 4 370 000 км |
Масса | 1,9885•10 30 кг (примерно 333 тысячи масс Земли) |
Площадь поверхности | 6 триллионов км² |
Объем | 1,41•10 18 км³ |
Плотность | 1,409 г/м³ |
Температура на поверхности | 6000° С |
Температура в центре звезды | 15 700 000° С |
Период вращения вокруг своей оси (на экваторе) | 25,05 дней |
Период вращения вокруг своей оси (на полюсах) | 34,3 дня |
Наклон оси вращения к эклиптике | 7,25° |
Минимальное расстояние до Земли | 147 098 290 км |
Максимальное расстояние до Земли | 152 098 232 км |
Вторая космическая скорость | 617 км/с |
Ускорение свободного падения | 27,96g |
Светимость (мощность излучения) | 3,828•10 26 Вт |
Состав Солнца
Основными элементами, из которых состоит наша звезда, являются водород (73,5% солнечной) и гелий (24,9%). На все остальные элементы приходится примерно 1,5%.
Химический состав светила непостоянен – он меняется из-за превращений, происходящих во время термоядерных реакций. На заре своего существования Солнце почти полностью состояло из водорода. В ходе термоядерных реакций этот элемент превращается в гелий, поэтому его массовая доля падает. Гелий также превращается в более тяжелые элементы, однако, однако в целом его доля возрастает. Изменения химического состава звезд оказывают огромное влияние на процессы их эволюции.
Строение Солнца
Конечно, у Солнца, состоящего из газов, нет привычной нам твердой поверхности. Значительную ее часть составляет атмосфера, которая по мере движения к центру светила уплотняется. Тем не менее принято выделять 6 «слоев», из которых состоит звезда. Три из них являются внутренними, а следующие три образуют солнечную атмосферу.
Внутреннее строение Солнца
Внутренняя структура нашей звезды включает следующие слои:
В центре светила располагается ядро. Именно в этой области идут термоядерные реакции. Радиус ядра оценивается в 150 тыс. км. Температура здесь не опускается ниже 13,5 млн градусов, а давление доходит до 200 млрд атм. Из-за этого вещество здесь находится в крайне плотном состоянии. Его плотность составляет 150 г/куб. см. Это в 7,5 раз выше плотности золота. Именно такие условия необходимы для протекания термоядерных реакций. Надо понимать, что именно в ядре вырабатывается энергия, которую и излучает Солнце. Все остальные области звезды лишь обогреваются ядром, но сами ее не вырабатывают.
Зона лучистого переноса
Над ядром располагается зона радиации, которую также именуют зоной лучистого переноса. Ее внешняя граница проходит по сфере радиусом 490 тыс. км. Температура постепенно падает от отметки в 7 млн градусов на границе с ядром до 2 млн градусов у внешней границы. Также и плотность вещества снижается с 20 до 0,2 г/куб. см. Тем не менее из-за высокой плотности атомы водорода не могут двигаться. То есть если при нагреве, например, воды ее теплые слои поднимаются на поверхность, перенося туда тепло, то здесь такой механизм не работает – вещество остается неподвижным. Единственный способ энергии пробраться через зону радиации – это длительная цепочка поглощений и излучений фотонов атомами водорода. Из-за этого фотон, возникший при термоядерной реакции в ядре, в среднем «пробирается» наружу через зону радиации примерно 170 тыс. лет!
Зона конвективного переноса
Выше располагается зона конвективного переноса толщиной 200 тыс. км. Здесь плотность уже невысока, и вещество активно перемешивается – нагретые газы поднимаются наверх, отдают тепло, остывают и снова погружаются вниз. Скорость газовых потоков может достигать 6 км/с. Именно это движение порождает магнитное поле Солнца. Температура на поверхности падает до 6000° С, а плотность на три порядка ниже плотности земной атмосферы.
Атмосфера
Атмосфера Солнца состоит из следующих слоев:
Фотосфера
Нижний слой атмосферы называют фотосферой. Именно она излучает тот свет, который согревает планеты Солнечной системы. Толщина фотосферы колеблется от 100 до 400 км. На внешней границе фотосферы температура падает до 4700° С.
Хромосфера
Над фотосферой располагается хромосфера – слой толщиной около 2000 км. Её яркость очень мала, поэтому с Земли её можно наблюдать довольно сложно. Удобнее всего это делать во время солнечных затмений. Она имеет специфический красный оттенок. В хромосфере можно наблюдать спикулы – столбы плазмы, выбрасываемые из нижних слоев хромосферы. Время существования одной спикулы не превышает 10 минут, а длина доходит до 20 тыс. км. Одновременно в хромосфере находится около миллиона спикул. Интересно, что с увеличением высоты температура хромосферы не падает, а растет, и на верхней границе может доходить до 20 000° С.
Корона
Верхний слой атмосферы называется короной. Ее верхняя граница до сих пор четко не определена. Вещество в ней крайне разрежено, однако температура в ней может достигать нескольких миллионов градусов. На сегодня ученым не удалось полностью объяснить, за счет каких механизмов солнечная корона разогревается до такой температуры. В короне можно наблюдать протуберанцы – выбросы солнечного вещества, чья высота над поверхностью звезды может достигать 1,7 млн км.
Магнитное поле Солнца
У Солнца есть магнитное поле. Исследователи выделяют глобальное поле звезды и множество локальных полей.
Глобальное поле обладает цикличностью. Его напряженность колеблется с частотой 11 лет, при этом наблюдаются изменения в частоте появления солнечных пятен. Такой цикл называют «циклом Швабе» по фамилии ученого, заметившего ещё в XIX веке, что количество солнечных пятен на поверхности светила меняется циклически. Лишь позже стала очевидна связь этого явления с процессами в зоне конвективного переноса и колебаниями магнитного поля. В начале XX века стало ясно, что за один цикл Швабе полярность магнитного поля меняется на противоположное. То есть Солнцу нужна два 11-летних цикла, чтобы магнитное поле вернулось к начальному состоянию. В связи с этим выделяют 22-летний цикл, известный как «цикл Хейла».
В разных районах Солнца могут наблюдаться и малые, то есть локальные магнитные поля. Их напряженность может в тысячи раз превышать напряженность глобального поля, однако время их существования редко превышает несколько десятков дней. Особенно часто локальные поля наблюдаются в районе солнечных пятен. Дело в том, что эти пятна как раз и являются теми точками, через которые магнитные поля из внутренних областей выходят наружу.
Жизненный цикл Солнца
Возраст Солнца оценивается учеными в 4,5 млрд лет. Сформировалось оно из газопылевого облака, которое постепенно сжималось под действием собственной гравитации. Из этого же облака возникли планеты и почти все остальные объекты в Солнечной системе. Когда в центре сжимающегося облака плотность, а вместе с ней температура и давление выросли до критических значений, началась термоядерная реакция – так зажглось Солнце.
В ходе термоядерных реакций масса Солнца постепенно уменьшается. Каждую секунду 4 млн тон солнечного вещества преобразуется в энергию. Вместе с тем звезда разогревается. Каждый 1,1 млрд лет яркость Солнца увеличивается на 10%. Это значит, что ранее температура на Земле была значительно ниже, чем сейчас, а на Венере, возможно, была жидкая вода или даже жизнь (сейчас средняя температура на поверхности Венеры составляет 464° С). В будущем же яркость Солнца будет возрастать, что будет вести к росту температуры на Земле. Через 3,5 млрд лет яркость светила вырастет на 40%, и условия на Земле станут такими же, как и на Венере. С другой стороны, Марс также разогреется и станет более пригодным для жизни. Таким образом, в ходе эволюции звезды так называемая «зона обитаемости», постепенно удаляется от Солнца.
Постепенно из-за выгорания водорода ядро будет уменьшаться в размерах, а вся звезда в целом – увеличиваться. Через 6,4 млрд лет водород в ядре закончится, радиус звезды в этот момент будет больше современного в 1,59 раз. В течение 700 млн лет звезда расширится до 2,3 современных радиусов.
Далее рост температуры приведет к тому, что термоядерные реакции горения водорода запустятся уже не в ядре, а в оболочке звезды. Из-за этого она резко расширится, и ее внешние слои будут достигать современной земной орбиты. Однако к тому моменту светило потеряет значительную часть своей массы (28%), что позволит нашей планете перейти на более отдаленную орбиту. Солнце в этот период своей жизни, который продлится 10 млн лет, будет являться красным гигантом.
После из-за роста температуры в ядре до 100 млн градусов там начнется активная реакция горения гелия – «гелиевая вспышка». Радиус светила сократится до 10 современных радиусов. На выгорание гелия уйдет порядка 110 млн лет, после чего звезда снова расширится и станет красным гигантом, но эта стадия будет длиться уже 20 млн лет.
Из-за пульсаций, связанных с изменениями температуры Солнца, его внешние слои отделятся от ядра и образуют планетарную туманность. Само же ядро превратится в белый карлик – объект, чьи размеры будут сопоставимы размерами Земли, а масса будет равна половине современной солнечной массы. Далее этот карлик, состоящий из углерода и кислорода, будет постепенно остывать. Никаких термоядерных реакций в белом карлике идти не будет, поэтому со временем (за десятки млрд лет) он превратится в черный карлик – остывшую плотную массу вещества. На этом эволюция Солнца завершится.
Орбита и расположение Солнца в галактике Млечный путь
Солнце вместе со всей Солнечной системой вращается относительно центра Млечного пути, в котором располагается огромная черная дыра. Расстояние от нее до нашего светила составляет 26 тыс. св. лет. Один оборот Солнечная система совершает примерно за 225-250 млн лет. Скорость движения звезды относительно центра галактики составляет 225 км/с.
На сегодня Солнце располагается в рукаве Ориона. Нам повезло с расположением Солнечной системы в Млечном Пути. Дело в том, что скорость вращения нашей системы почти совпадает со скоростью вращения так называемых спиральных рукавов. Из-за этого наша система не попадает в них, хотя большинство других звезд периодически оказываются там. В спиральных рукавах очень сильное излучение, которое способно убить всё живое. Если бы Солнце находилось на другой орбите, оно периодически попадало бы в спиральные рукава, что приводило бы к «стерилизации» жизни на Земле.
Исследование Солнца
Изначально люди относились к Солнцу как к божеству, дающему людям свет. Древние астрономы полагали, что наше светило – это лишь одна из планет, к которым также относили и Луну. Поэтому в честь него, как и в честь других планет, нередко называли дни недели. И сегодня в английском языке воскресенье носит название «Sunday», что переводится как «день Солнца». В 800 г. до н. э. китайцы впервые обнаружили на Солнце пятна.
Аристарх Самосский в III в. до н. э. первым предположил, что именно Земля вращается вокруг Солнца, а не наоборот. Но лишь во времена Коперника и Галилея эта теория была принята научным сообществом. Тогда же начались исследования Солнца с помощью телескопа. Галилей понял, что солнечные пятна – это часть светила. Изучая их, он понял, что звезда вращается вокруг своей оси, и даже смог определить период обращения.
В 1672 г. Д. Кассини смог достаточно точно рассчитать расстояние до светила. Для этого он определял положение Марса на небосводе в Париже и Кайенне (Южная Америка). Он получил значение в 140 млн км.
В XIX в. физики стали изучать спектр солнечного света. Этот метод позволял определить химический состав звезды. В 1868 г. было обнаружено, что в состав светила входит элемент, до того неизвестный человечеству. Его назвали гелием.
Большой загадкой для ученых оставалась природа энергии, излучаемой Солнцем. Выдвигались ошибочные версии, что звезда нагревается за счет падения на нее метеоритов или за счет гравитационного сжатия. Лишь с открытием ядерных реакций физики смогли предположить, что источник солнечного тепла – это термоядерный синтез.
Дальнейшее изучение Солнца связано с развитием космонавтики. С помощью советских аппаратов «Луна-1» и «Луна-2» в 1959 г. был открыт солнечный ветер.
Интересные факты о Солнце
Для любого объекта, излучающего тепло, можно посчитать отношение мощности к его объему. Оказывается, что удельная мощность Солнца примерно в тысячу раз меньше, чем удельная мощность человеческого организма! Это означает, что огромный объем выделяемого светилом тепла в первую очередь объясняется его гигантскими размерами.
Периодически всплески солнечной активности приводят к геомагнитным бурям. Мощнейшая из них произошла в 1859 г. В результате на Земле перестала работать телеграфная связь, а северное сияние наблюдалось даже над Кубой.
Сейчас общепризнанна теория, что Солнце образовалось из газопылевого облака. Однако откуда появилось само облако? Ученые предполагают, что оно является остатком предыдущих звезд. Химический анализ показывает, что Солнце является звездой уже третьего поколения. Это значит, что вещество, из которого состоит светило, ранее входило в состав двух других звезд, уже прекративших существование.
Хотя большинство планет вращаются вокруг Солнца в плоскости эклиптики, экватор самой звезды не совпадает с этой плоскостью, а наклонен на 7°. Эту аномалию до сих пор не удалось объяснить. Возможно, причиной этого является существование ещё одной планеты в Солнечной системе, чья орбита лежит не в плоскости эклиптики, а под углом к ней. Ряд наблюдений подтверждает существование Девятой планеты, но пока что говорить об ее открытии преждевременно.
Список использованных источников
Источник