Решение задач при подготовке к ЕГЭ. Работу выполнила , школа 182
Решение задач при подготовке к ЕГЭ.
Работу выполнила , школа 182.
Один моль идеального одноатомного газа сначала изотермически расширился (Т1=300К). Затем газ охладили, понизив его давление в 3 раза (см. рис1). Какое количество теплоты отдал газ на участке 2-3?
Р1V1= Р2V2 Р2/ Т1 = Р3/ Т3 Р2/ Т1 = Р2/3 Т3 Т3 = Т1/3
ΔU2.3 = 3/2*ν*R*(T3-T2) = 3/2*ν*R(T1/3 – T1) = — ν*R*T1
А2 = 0, т. к.V2 = V3
Неон расширяется сначала изотермически, затем адиабатно, при этом конечная температура газа в 2 раза ниже начальной. Работа, совершенная газом за весь процесс, равна 10Дж. Какое количество теплоты было получено газом за весь процесс, если его начальное давление и объём соответственно равны р1= 1кПа, V1= 3дм3?
Q1= ΔU1+A1 ΔU1 =0 → Q1= A1
ΔU2 = 3/2*ν*R*(T3-T2) = 3/2*ν*R*T1*(-1/2) = -3/4* ν*R*T1
Qобщ = Q1+ Q2 Aобщ= А1+ А2
Qобщ = А1+ ΔU2 + А2 = Aобщ – 3/4*Р1*V1
Идеальный одноатомный газ находится в горизонтальном цилиндрическом сосуде, закрытом поршнем. Первоначальное давление газа равно р1=3*105Па. Расстояние от дна сосуда до поршня l=0,2м, площадьпоперечного сечения поршня s=25см2. Газ начинают медленно нагревать, в результате чего поршень сдвинулся на расстояние х=5см. при движени поршня на него со стороны стенок сосуда действует сила трения, равная Fтр=2кН. Какое количество теплоты получил газ в этом процессе? Влиянием окружающей среды пренебречь.
1. Q1 = ΔU1 + A1 A1 = 0 Fд1 = P1*S = 3*105*25*10-4 = 750H
P2 = Fд2/ S = 2000/(25*10-4) = 8*105 Па
ΔU2 = 3/2*ν*R*(T2-T1) = 3/2*V*(P2 – P1) = 3/2*l*s*5*105
2. Q2 = ΔU2 + A2 A2= p2*ΔV = p2*S*x
νRT3 = p2 s*(l+x) → ΔU2 = 3/2*[ p2 s*(l+x) — p2*S*l] = 3/2*p2*S*x
Q = 3/2*l*S*5*105 + p2 *S*x+ 3/2*p2*S*x = 3/2*[l*S*5*105+2*p2*S*x]
На рисунке изображены графики изобарного расширения (нагревания) двух порций одного и того же идеального газа при одном и том же давлении. Почему изобара 1 лежит выше изобары 2? Ответ обоснуйте. Какие физические закономерности вы использовали для обоснования ответа?
Источник
Атмосфера нашего Солнца
Поверхность Солнца, которую мы видим, известна как фотосфера. Это область, где свет из ядра, наконец достигает поверхности. Температура фотосферы составляет около 6000 К, и она светится белым светом.
Фотосфера
Прямо над фотосферой, атмосфера простирается на несколько сотен тысяч километров. Давайте подробнее рассмотрим строение атмосферы Солнца.
Первый слой в атмосфере имеет минимальную температуру, и находится на расстоянии около 500 км над поверхностью фотосферы, с температурой около 4000 К. Для звезды это достаточно прохладно.
Хромосфера
Следующий слой известен как хромосфера. Она находится на расстоянии всего лишь около 10.000 км от поверхности. В верхней части хромосферы, температура может достигать 20000 К. Хромосфера невидима без специального оборудования, в котором используются узкополосные оптические фильтры. Гигантские солнечные протуберанцы могут подниматься в хромосфере на высоту 150.000 км.
Над хромосферой располагается переходный слой. Ниже этого слоя, гравитация является доминирующей силой. Над переходной областью, температура поднимается быстро, потому что гелий становится полностью ионизованным.
Солнечная корона
Следующий слой — корона, и она распространяется от Солнца на миллионы километров в космосе. Вы можете увидеть корону во время полного затмения, когда диск светила закрыт Луной. Температура короны примерно в 200 раз горячее поверхности.
В то время, как температура фотосферы всего 6000 K, у короны она может достигать 1-3 млн. градусов Кельвина. Ученые до сих пор до конца не знают, почему она настолько высока.
Гелиосфера
Верхняя часть атмосферы называется гелиосфера. Это пузырь пространства, заполненный солнечным ветром, он простирается примерно на 20 астрономических единиц (1 а.е. это расстояние от Земли до Солнца). В конечном итоге, гелиосфера постепенно переходит в межзвездную среду.
Источник
Почему атмосфера Солнца в сотни раз горячее, чем его поверхность — 80-летняя теория ученого наконец подтверждена
Видимая поверхность Солнца или фотосферы имеет температуру около 6000°C . Но в нескольких тысячах километров над ним — небольшое расстояние, если учесть размер Солнца — солнечная атмосфера, также называемая короной, в сотни раз горячее, достигая миллиона градусов Цельсия или выше.
Этот всплеск температуры, несмотря на увеличенное расстояние от основного источника энергии Солнца, наблюдается у большинства звезд и представляет собой фундаментальную загадку, над которой астрофизики размышляли на протяжении десятилетий.
В 1942 году шведский ученый Ханнес Альфвен предложил объяснение. Он предположил, что намагниченные волны плазмы могут переносить огромное количество энергии вдоль магнитного поля Солнца из его внутренней части в корону, минуя фотосферу, прежде чем взорваться теплом в верхних слоях атмосферы Солнца.
Теория была предварительно принята, но ученным все еще требовалось доказательство в виде эмпирических наблюдений, что эти волны существуют. Недавнее исследование , наконец, смогло подтвердить 80-летнюю теорию Альфвена и сделать еще один шаг к использованию этой высокоэнергетической феноменологии на Земле.
Горячие вопросы
Проблема нагрева короны возникла с конца 1930-х годов , когда шведский спектроскопист Бенгт Эдлен и немецкий астрофизик Вальтер Гротриан впервые наблюдали явления в короне Солнца, которые могли присутствовать только в том случае, если ее температура составляла несколько миллионов градусов по Цельсию.
Это означает, что температура в 1000 раз выше , чем в расположенной под ней фотосфере — поверхности Солнца, которую мы можем видеть с Земли. Оценить тепло фотосферы всегда было относительно просто: нужно лишь измерить свет, который доходит до нас от Солнца, и сравнить его со спектральными моделями, предсказывающими температуру источника света.
На протяжении многих десятилетий исследований температура фотосферы неизменно оценивалась примерно в 6000°C. Открытие Эдленом и Гротрианом того, что корона Солнца намного горячее фотосферы — несмотря на то, что она находится дальше от ядра Солнца, его основного источника энергии, — вызвал недоумение в научном сообществе.
Ученые обратились к свойствам Солнца, чтобы объяснить это несоответствие. Солнце почти полностью состоит из плазмы, которая представляет собой сильно ионизированный газ, несущий электрический заряд. Движение этой плазмы в конвективной зоне — верхней части солнечного недра — производит огромные электрические токи и сильные магнитные поля.
Эти поля затем вытягиваются из недр Солнца за счет конвекции и выходят на его видимую поверхность в виде темных солнечных пятен , которые представляют собой скопления магнитных полей, которые могут образовывать различные магнитные структуры в солнечной атмосфере.
Именно здесь на помощь приходит теория Альфвена . Он рассуждал, что внутри намагниченной плазмы Солнца любые объемные движения электрически заряженных частиц будут нарушать магнитное поле, создавая волны, которые могут переносить огромное количество энергии на огромные расстояния — от поверхности Солнца до его верхних слоев атмосферы. Тепло проходит по так называемым трубкам солнечного магнитного потока, прежде чем прорваться в корону, вызывая ее высокую температуру.
Эти магнитные плазменные волны теперь называются волнами Альфвена , и их роль в объяснении нагрева короны привела к тому, что Альфвен был удостоен Нобелевской премии по физике в 1970 году.
Наблюдение за альфвеновскими волнами
Но оставалась проблема наблюдения за этими волнами. На поверхности Солнца и в его атмосфере происходит так много всего — от явлений, во много раз превышающих размеры Земли, до небольших изменений, которые ниже разрешающей способности приборов ученных, — что прямых наблюдательных доказательств существования волн Альфвена в фотосфере до сих пор не было.
Но недавние достижения в приборостроении открыли новое окно, через которое можно изучать физику Солнца. Одним из таких инструментов является интерферометрический двумерный спектрополяриметр (ИДС) для спектроскопии изображений, установленный на солнечном телескопе Данна в американском штате Нью-Мексико. Этот инструмент позволил проводить ученным гораздо более подробные наблюдения и измерения Солнца.
В сочетании с хорошими условиями просмотра, передовым компьютерным моделированием и усилиями международной группы ученых из семи исследовательских институтов с помощью ИДС было впервые подтверждено существование альфвеновских волн в трубках солнечного магнитного потока.
Новый источник энергии
Прямое открытие альфвеновских волн в фотосфере Солнца — важный шаг к использованию их высокого энергетического потенциала здесь, на Земле. Они могут помочь, например, в исследовании ядерного синтеза, который представляет собой процесс, происходящий внутри Солнца, при котором небольшое количество материи преобразуется в огромное количество энергии. На нынешних атомных электростанциях используется деление ядер, которое, по мнению критиков, приводит к возникновению опасных ядерных отходов, — особенно в случае катастроф, подобных той, что произошла в Фукусиме в 2011 году.
Создание чистой энергии путем воспроизведения ядерного синтеза Солнца на Земле остается огромной проблемой, потому что ученным все еще предстоит быстро создать 100 миллионов градусов Цельсия, чтобы синтез мог произойти. Волны Альфвена могут быть одним из способов сделать это. Растущие знания ученых о Солнце показывают, что это, безусловно, возможно — при правильных условиях.
Кроме того, в ближайшее время нас ожидают новые солнечные открытия благодаря новым, новаторским миссиям и приборам. Спутник Европейского космического агентства Solar Orbiter сейчас находится на орбите вокруг Солнца, передавая изображения и проводя измерения неизведанных полярных областей звезды. В наземных условиях открытие новых высокопроизводительных солнечных телескопов также должно улучшить наблюдения за Солнцем с Земли.
Поскольку многие секреты Солнца еще предстоит открыть, включая свойства магнитного поля Солнца, это захватывающее время для исследований Солнца. Обнаружение ученными волн Альфвена — лишь один из вкладов в более широкую область, которая стремится раскрыть оставшиеся загадки Солнца для практического применения на Земле.
Источник
Почему атмосфера Солнца в сотни раз горячее, чем его поверхность — 80-летняя теория ученого наконец подтверждена
Видимая поверхность Солнца или фотосферы имеет температуру около 6000°C . Но в нескольких тысячах километров над ним — небольшое расстояние, если учесть размер Солнца — солнечная атмосфера, также называемая короной, в сотни раз горячее, достигая миллиона градусов Цельсия или выше.
Этот всплеск температуры, несмотря на увеличенное расстояние от основного источника энергии Солнца, наблюдается у большинства звезд и представляет собой фундаментальную загадку, над которой астрофизики размышляли на протяжении десятилетий.
В 1942 году шведский ученый Ханнес Альфвен предложил объяснение. Он предположил, что намагниченные волны плазмы могут переносить огромное количество энергии вдоль магнитного поля Солнца из его внутренней части в корону, минуя фотосферу, прежде чем взорваться теплом в верхних слоях атмосферы Солнца.
Теория была предварительно принята, но ученным все еще требовалось доказательство в виде эмпирических наблюдений, что эти волны существуют. Недавнее исследование , наконец, смогло подтвердить 80-летнюю теорию Альфвена и сделать еще один шаг к использованию этой высокоэнергетической феноменологии на Земле.
Горячие вопросы
Проблема нагрева короны возникла с конца 1930-х годов , когда шведский спектроскопист Бенгт Эдлен и немецкий астрофизик Вальтер Гротриан впервые наблюдали явления в короне Солнца, которые могли присутствовать только в том случае, если ее температура составляла несколько миллионов градусов по Цельсию.
Это означает, что температура в 1000 раз выше , чем в расположенной под ней фотосфере — поверхности Солнца, которую мы можем видеть с Земли. Оценить тепло фотосферы всегда было относительно просто: нужно лишь измерить свет, который доходит до нас от Солнца, и сравнить его со спектральными моделями, предсказывающими температуру источника света.
На протяжении многих десятилетий исследований температура фотосферы неизменно оценивалась примерно в 6000°C. Открытие Эдленом и Гротрианом того, что корона Солнца намного горячее фотосферы — несмотря на то, что она находится дальше от ядра Солнца, его основного источника энергии, — вызвал недоумение в научном сообществе.
Ученые обратились к свойствам Солнца, чтобы объяснить это несоответствие. Солнце почти полностью состоит из плазмы, которая представляет собой сильно ионизированный газ, несущий электрический заряд. Движение этой плазмы в конвективной зоне — верхней части солнечного недра — производит огромные электрические токи и сильные магнитные поля.
Эти поля затем вытягиваются из недр Солнца за счет конвекции и выходят на его видимую поверхность в виде темных солнечных пятен , которые представляют собой скопления магнитных полей, которые могут образовывать различные магнитные структуры в солнечной атмосфере.
Именно здесь на помощь приходит теория Альфвена . Он рассуждал, что внутри намагниченной плазмы Солнца любые объемные движения электрически заряженных частиц будут нарушать магнитное поле, создавая волны, которые могут переносить огромное количество энергии на огромные расстояния — от поверхности Солнца до его верхних слоев атмосферы. Тепло проходит по так называемым трубкам солнечного магнитного потока, прежде чем прорваться в корону, вызывая ее высокую температуру.
Эти магнитные плазменные волны теперь называются волнами Альфвена , и их роль в объяснении нагрева короны привела к тому, что Альфвен был удостоен Нобелевской премии по физике в 1970 году.
Наблюдение за альфвеновскими волнами
Но оставалась проблема наблюдения за этими волнами. На поверхности Солнца и в его атмосфере происходит так много всего — от явлений, во много раз превышающих размеры Земли, до небольших изменений, которые ниже разрешающей способности приборов ученных, — что прямых наблюдательных доказательств существования волн Альфвена в фотосфере до сих пор не было.
Но недавние достижения в приборостроении открыли новое окно, через которое можно изучать физику Солнца. Одним из таких инструментов является интерферометрический двумерный спектрополяриметр (ИДС) для спектроскопии изображений, установленный на солнечном телескопе Данна в американском штате Нью-Мексико. Этот инструмент позволил проводить ученным гораздо более подробные наблюдения и измерения Солнца.
В сочетании с хорошими условиями просмотра, передовым компьютерным моделированием и усилиями международной группы ученых из семи исследовательских институтов с помощью ИДС было впервые подтверждено существование альфвеновских волн в трубках солнечного магнитного потока.
Новый источник энергии
Прямое открытие альфвеновских волн в фотосфере Солнца — важный шаг к использованию их высокого энергетического потенциала здесь, на Земле. Они могут помочь, например, в исследовании ядерного синтеза, который представляет собой процесс, происходящий внутри Солнца, при котором небольшое количество материи преобразуется в огромное количество энергии. На нынешних атомных электростанциях используется деление ядер, которое, по мнению критиков, приводит к возникновению опасных ядерных отходов, — особенно в случае катастроф, подобных той, что произошла в Фукусиме в 2011 году.
Создание чистой энергии путем воспроизведения ядерного синтеза Солнца на Земле остается огромной проблемой, потому что ученным все еще предстоит быстро создать 100 миллионов градусов Цельсия, чтобы синтез мог произойти. Волны Альфвена могут быть одним из способов сделать это. Растущие знания ученых о Солнце показывают, что это, безусловно, возможно — при правильных условиях.
Кроме того, в ближайшее время нас ожидают новые солнечные открытия благодаря новым, новаторским миссиям и приборам. Спутник Европейского космического агентства Solar Orbiter сейчас находится на орбите вокруг Солнца, передавая изображения и проводя измерения неизведанных полярных областей звезды. В наземных условиях открытие новых высокопроизводительных солнечных телескопов также должно улучшить наблюдения за Солнцем с Земли.
Поскольку многие секреты Солнца еще предстоит открыть, включая свойства магнитного поля Солнца, это захватывающее время для исследований Солнца. Обнаружение ученными волн Альфвена — лишь один из вкладов в более широкую область, которая стремится раскрыть оставшиеся загадки Солнца для практического применения на Земле.
Источник