Меню

Теории эволюции вселенной теория большого взрыва модели горячей

Теория Большого взрыва

Модель «Горячей вселенной» и теория Большого взрыва

Как известно, в 1929 американский астроном Эдвин Хаббл (1889–1953) открыл, что большинство галактик удаляется от нас, причем тем быстрее, чем дальше расположена галактика (закон Хаббла). Это было интерпретировано как всеобщее расширение Вселенной, начавшееся примерно 15 млрд. лет назад. Встал вопрос о том, как выглядела Вселенная в далеком прошлом, когда галактики только начали удаляться друг от друга, и даже еще раньше.

Хотя математический аппарат, основанный на общей теории относительности Эйнштейна и описывающий динамику Вселенной, был создан еще в 1920-е годы Виллемом де Ситтером (1872–1934), Александром Фридманом (1888–1925) и Жоржем Леметром (1894–1966), о физическом состоянии Вселенной в раннюю эпоху ее эволюции ничего не было известно. Не было даже уверенности, что в истории Вселенной существовал определенный момент, который можно считать «началом расширения».

Развитие ядерной физики в 1940-е годы позволило начать разработку теоретических моделей эволюции Вселенной в прошлом, когда ее вещество, как предполагалось, было сжато до высокой плотности, при которой были возможны ядерные реакции. Эти модели, прежде всего, должны были объяснить состав вещества Вселенной, который к тому времени уже был достаточно надежно измерен по наблюдениям спектров звезд: в среднем они состоят на 2/3 из водорода и на 1/3 из гелия, а все остальные химические элементы вместе взятые составляют не более 2%.

Знание свойств внутриядерных частиц – протонов и нейтронов – позволяло рассчитывать варианты начала расширения Вселенной, различающиеся исходным содержанием этих частиц и температурой вещества и находящегося с ним в термодинамическом равновесии излучения. Каждый из вариантов давал свой состав исходного вещества Вселенной.

Если опустить детали, то существуют две принципиально разные возможности для условий, в которых протекало начало расширения Вселенной: ее вещество могло быть либо холодным, либо горячим. Следствия ядерных реакций при этом в корне отличаются друг от друга. Хотя идею о возможности горячего прошлого Вселенной высказывал еще в своих ранних работах Леметр, исторически первой в 1930-е годы была рассмотрена возможность холодного начала.

В первых предположениях считалось, что все вещество Вселенной существовало сначала в виде холодных нейтронов. Позже выяснилось, что такое предположение противоречит наблюдениям. Дело в том, что нейтрон в свободном состоянии распадается в среднем за 15 минут после возникновения, превращаясь в протон, электрон и антинейтрино. В расширяющейся Вселенной возникшие протоны стали бы соединяться с еще оставшимися нейтронами, образуя ядра атомов дейтерия. Дальше цепочка ядерных реакций привела бы к образованию ядер атомов гелия. Более сложные атомные ядра, как показывают расчеты, при этом практически не возникают. В результате все вещество превратилось бы в гелий. Такой вывод находится в резком противоречии с наблюдениями звезд и межзвездного вещества. Распространенность химических элементов в природе отвергает гипотезу о начале расширения вещества в виде холодных нейтронов.

Принципиально новый этап в развитии современной эволюционной космологии связан с именем американского физика Г.А.Гамова (1904-1968), благодаря которому в науку вошло понятие горячей Вселенной. Согласно предложенной им модели «начала» эволюционирующей Вселенной «первоатом» Леметра состоял из сильно сжатых нейтронов, плотность которых достигала чудовищной величины — один кубический сантиметр первичного вещества весил миллиард тонн.

В результате взрыва этого «первоатома» по мнению Г.А.Гамова образовался своеобразный космологический котел с температурой порядка трех миллиардов градусов, где и произошел естественный синтез химических элементов. Осколки первичного яйца — отдельные нейтроны затем распались на электроны и протоны, которые, в свою очередь, соединившись с нераспавшимися нейтронами, образовали ядра будущих атомов. Все это произошло в первые 30 минут после «Большого Взрыва.

Читайте также:  Филип дик как создать вселенную которая не рассыпется через пару дней

Горячая модель представляла собой конкретную астрофизическую гипотезу, указывающую пути опытной проверки своих следствий. Гамов предсказал существование в настоящее время остатков теплового излучения первичной горячей плазмы, а его сотрудник Герман еще в 1948 г. довольно точно рассчитал величину температуры этого остаточного излучения уже современной Вселенной.

В настоящее время существует несколько космологических моделей, объясняющих отдельные аспекты возникновения материи во Вселенной, но они не объясняют причин и процесса рождения самой Вселенной. Из всей совокупности современных космологических теорий только теория Большого взрыва Г. Гамова смогла к настоящему времени удовлетворительно объяснить почти все факты. Однако Гамову и его сотрудникам не удалось дать удовлетворительное объяснение естественному образованию и распространенности тяжелых химических элементов во Вселенной, что явилось причиной скептического отношения к его теории со стороны специалистов. Как оказалось, предложенный механизм ядерного синтеза не мог обеспечить возникновение наблюдаемого ныне количества этих элементов.

Основные черты модели Большого взрыва сохранились до сих пор, хотя и были позже дополнены теорией инфляции, или теорией раздувающейся Вселенной, разработанной американскими учеными А. Гутом и П. Стейнхардтом и дополненной советским физиком А.Д. Линде.

Источник

Большой взрыв и происхождение Вселенной

Происхождение Вселенной остается одной из главных загадок науки. С начала наблюдений за звездным небом человечество пыталось понять, как возникло все, что его окружает, и что там за пределами нашего мира. С развитием технологий ему покорились многие природные явления и даже просторы космоса, но никто так до сих пор и не установил, как зародилась Вселенная. Однако, астрономы выдвинули множество теорий на этот счет, некоторые из них вполне логичны и правдоподобны.

Теория большого взрыва

Основной теорией возникновения Вселенной в ее нынешнем состоянии является теория большого взрыва. Впервые этот термин был применен британским астрономом Ф. Хойлом в 1949 году. При этом сам ученый считал данное предположение о происхождении и эволюции Вселенной ошибочным.

Сами же идеи о расширении Вселенной и ее развитии в результате взрывного процесса возникли в начале 20 века. Способствовал этому Альберт Эйнштейн, опубликовавший свою теорию относительности. Нестационарное решение его гравитационного уравнения натолкнуло советского физика Фридмана на гипотезу о том, что Универсум – постоянно расширяющийся объект. По его версии, вначале она представляла собой очень плотное, однородное вещество. Оно в результате большого взрыва начало распространяться, образуя привычные нам элементы космоса – галактики, туманности, звезды, планеты и другие тела.

Теория происхождения Вселенной по Фридману неоднократно подвергалась дополнениям и улучшениям. В 1948 году астрофизик Георгий Гамов опубликовал работу, в которой описывал первичное вещество до Большого взрыва не только как очень плотное, но и как очень горячее. В нем постоянно происходили реакции термоядерного синтеза, в результате которых образовались ядра легких химических элементов. Выделяемое при этом электромагнитное излучение сохранилось до сих пор, но в остывающем виде. Теория была подтверждена почти через 20 лет после того, как ученым удалось открыть и измерить температуру космического фона. Изучение реликтового излучения также помогла установить возраст мироздания и распределение в нем вещества.

Современное представление о возникновении Вселенной

  • Теория Большого взрыва – описывает то, что стало пусковым механизмом расширения первичной материи.
  • Инфляционная теория – рассматривает причины расширения вещества.
  • Модель расширения Фридмана – описывает процессы распределения материи в пространстве.
  • Иерархическая теория – описывает возникновение всех структур космоса.
Читайте также:  Что было до великого взрыва во вселенной

Хронология событий в теории Большого взрыва

Теория эволюции Вселенной подразумевает, что до Большого взрыва все мироздание находилось в принципиально другом состоянии. А после – проходило стадии развития, благодаря которым заполнилось частицами, химическими элементами и другими структурами. Они же послужили строительным материалом для всех космических тел и объектов. Каждый эпоха развития имеет свою продолжительность от незначительных долей секунды до миллиардов лет. Попробуем изложить теорию происхождения Вселенной кратко и простым языком.

Эпоха сингулярности

Большому взрыву и происхождению Вселенной в современном ее виде предшествовала стадия космологической сингулярности. Это состояние Универсума, при котором вещество имеет почти бесконечные значения плотности и температуры, а само оно стремится к нулю.

Космологическая сингулярность – один из самых трудных вопросов современной науки. Невозможно точно установить, что именно было до Большого взрыва. Но бесконечная плотность раннего вселенского вещества не может сопровождаться его бесконечной температурой. Следовательно, сингулярная Вселенная противоречит современным законам физики.

По некоторым предположениям, эпохи сингулярности вообще не существовало. Еще по предположению группы ученых, в число которых входит С.Хокинг, все сущее могло возникнуть из абсолютного вакуума («ничего») из-за колебаний системы. По другой теории, Большой взрыв привел лишь к образованию Метагалактики, как «пузырька» в плотном веществе Универсума. Есть также гипотеза о том, что вселенные образуются из-за разрывов сингулярности в пределах черных дыр. Доподлинно же установить, что было до Большого взрыва, не представляется возможным.

Планковская эпоха

Итак, в первичном мироздании произошел катастрофический процесс, в результате которого вещество начало стремительно расширяться и охлаждаться. При чем для формирования всех структур космического пространства взрыв должен был произойти повсюду. Это и является точкой отчета возникновения мироздания в его нынешнем виде.

В период от нуля до 10 -43 секунд вещество Универсума имело физические параметры (температура, энергия, плотность) соответствующие постоянным Планка. В таких условиях планковской эпохи произошло рождение частиц.

Эпоха великого объединения

В период с 10 -43 по 10 -35 секунд после Большого взрыва в относительно устойчивой системе возникли силы гравитации. Они впоследствии способствовали возникновению звезд и планет. Первичная материя перестала быть однородно плотной. Но электромагнитное и ядерное взаимодействия в ней были еще объединены, поэтому любые физико-химические параметры для этого вещества не имеют смысла.

Эпоха инфляции

При переходе в эту стадию эволюции Вселенная начала ускоренно расширяться. Это позволило перераспределиться высокоплотному изотропному первичному веществу. Эпоха заняла промежуток времени с 10 -35 по 10 -32 секунды от взрывного процесса.

Электрослабая эпоха

К этому моменту сильное ядерное взаимодействие, как и гравитация, отделено от первичной материи. Период с 10 -32 по 10 -12 секунд – момент рождения таких элементарных частиц, как хиггсовский бозон и W-, Z-частицы. Симметрия до вселенского вещества окончательно разрушена.

Кварковая эпоха

С 10 -12 по 10 -6 секунд все четыре фундаментальные взаимодействия начинают существовать отдельно. Все вещество Универсума представляет собой «кварковый суп» из безмассовых и бесструктурных фундаментальных частиц.

Андронная эпоха

Из фундаментальных частиц начали образовываться андроны – частицы с сильным ядерным взаимодействием. Именно из них образуются нуклоны, формирующее атомные ядра, протоны и нейтроны. Весь процесс андронизации занял порядка ста секунд после Большого взрыва.

Лептонная эпоха

Первые три минуты существования Универсума происходит формирование лептонов, в том числе и их подвида – нейтрино. Это еще одни фундаментальные структуры вселенского вещества, из которых в дальнейшем было построено все в мироздании.

Читайте также:  Самые интересные вопросы вселенной

Протонная эпоха

Более 300 тысяч лет ушло на первичный процесс нуклеосинтеза легких химических элементов и перераспределения вещества Универсума. Оно стало доминировать над излучением, что замедлило расширение космического пространства. Конец данной стадии ознаменовался возможностью передвижения тепловых фотонов.

Темные века

Ни одной привычной нам космической структуры в первые 500 млн. лет после возникновения Вселенной не существовало. Она была заполнена водородно-гелиевой массой и реликтовым тепловым излучением, распространяющимся по всему ее пространству.

Реионизация

Постепенно облака водорода и гелия под воздействием гравитации начали сжиматься, в них стали зарождаться процессы термоядерного синтеза. Появились первые звезды. Они стали собираться в скопления, называемые галактиками. В центре формирующихся галактик возникал источник мощнейшего излучения и гравитационного притяжения – квазар. Этот процесс занял более 300 млн. лет.

Эра вещества

Молодые звезды формируют вокруг себя протопланетные диски, из которых впоследствии образовываются целые планетарные системы. В эту эру 4,6 млрд. лет назад возникла и Солнечная система со всеми окружающими ее планетами. Вся же история Вселенной продолжается более 13,7 млрд.лет.

Будущее Вселенной

Теория возникновения Вселенной путем Большого взрыва официально признана в научном мире. Согласно ее основным утверждениям, космическое пространство все еще продолжает эволюционировать и на смену одним структурам приходят абсолютно новые. Существуют две противоположные версии дальнейшего развития событий:

  • Большой разрыв. Если Универсум и дальше продолжит расширяться, то в дальнейшем гравитационное взаимодействие между его элементами начнет стремительно ослабевать. Произойдет распад галактик и их скоплений. После этого распадутся отдельные звездные системы, где гравитация звезды не в силах будет удержать планеты вокруг себя. Постепенно все элементы Вселенной разрушаться вновь до элементарных частиц, законы физики перестанут иметь смысл. Что произойдет дальше – предсказать невозможно.
  • Большое сжатие. В этом сценарии описывается предположение, что космическое пространство постепенно замедлит свое расширение и начнет обратно сжиматься. Все его элементы образуют единое мега скопление, в котором будет продолжаться процессы рождения, эволюции и смерти галактик. Однако, вещество будет сжиматься и далее, что приведет к образованию одной гигантской галактики. Космическое пространство вновь начнет нагреваться, реликтовое излучение разрушит планеты и звезды. Все структуры перейдут в состояние элементарных частиц. Вселенная приобретет свой первоначальный вид до Большого взрыва.

Любой из основных сценариев смерти Вселенной в нынешнем ее состоянии предполагает распад всех ее структур до фундаментальных частиц и прекращения любых сил взаимодействия. Так ли оно будет на самом деле, предсказать современной науке невозможно.

Основные теории происхождения Вселенной

Большой взрыв не единственное современное представление о происхождении и эволюции Вселенной. Научный мир знает множество теорий возникновения мира, основными из которых являются:

  • Теория струн. Ее основное утверждение заключается в том, что все существующее состоит из мельчающих энергетических нитей. Такие квантовые струны могут растягиваться, искривляться и располагаться в любых направлениях, что делает космическое пространство многомерным. И каждое из этих измерений имеет свою эволюционную стадийность.
  • Теория стационарной Вселенной. По этой версии, в расширяющемся пространстве космоса постоянно возникает новая материя, что делают всю систему стабильной. Идея была популярна в середине 20-го века, но после открытия и изучения реликтового излучения у нее практически не осталось сторонников.

Не исключено, что все предположения о возникновении мироздания, признанные сейчас в научном мире, не будут опровергнуты в будущем. И чем дальше и дольше человечество исследует космические просторы, тем больше новых ответов и вопросов оно находит.

Источник

Adblock
detector