Теория Большого взрыва (презентация к уроку)
презентация к уроку по астрономии (11 класс) по теме
Одна из теорий происхождения нашей Вселенной (11 класс)
Скачать:
Вложение | Размер |
---|---|
teoriya_bolshogo_vzryva.ppt | 775 КБ |
Предварительный просмотр:
Подписи к слайдам:
Теория Большого взрыва
Теория Большого Взрыва утверждает, что вся физическая вселенная – материя, энергия и даже 4 измерения пространства и времени возникли из состояния бесконечных значений плотности, температуры и давления. Вселенная возникла из объема меньшего, чем точка и продолжает расширяться. Теория Большого Взрыва теперь общепринята, так как она объясняет оба наиболее значительных факта космологии: расширяющуюся Вселенную и существование космического фонового излучения.
Это событие произошло от 13 до 20 миллиардов лет назад. Можно воспользоваться известными законами физики и просчитать в обратном направлении все состояния, в которых находилась Вселенная, начиная с 10-43 секунд после Большого Взрыва. В течение первого миллиона лет вещество и энергия во Вселенной сформировали непрозрачную плазму, иногда называемую первичным огненным шаром. К концу этого периода расширение Вселенной заставило температуру опуститься ниже 3000 K, так что протоны и электроны смогли объединяться, образуя атомы водорода. На этой стадии Вселенная стала прозрачной для излучения. Плотность вещества теперь стала выше плотности излучения, хотя раньше ситуация была обратной, что и определяло скорость расширения Вселенной. Фоновое микроволновое излучение — все, что осталось от сильно охлажденного излучения ранней Вселенной.
Начало звездообразования Это изображение показывает предположение о том, как выглядела очень молодая вселенная (меньше чем 1 миллиард лет), когда начиналось формирование звезд, преобразовывая исходный водород в бесчисленные звезды.
Первые галактики начали формироваться из первичных облаков водорода и гелия только через один или два миллиарда лет. Термин «Большой Взрыв» может применяться к любой модели расширяющейся Вселенной, которая в прошлом была горячей и плотной Большое Магелланово Облако — галактика, которая сопровождает нашу собственную. Она видима невооруженным взглядом как туманная, удлиненная область неба. Оно расположено на расстоянии в 160,000 световых лет и охватывает область в 20,000 световых лет. Его видимая часть — десятая часть Млечного пути
Туманность Песочных часов — молодая планетарная туманность удаленная от нас приблизительно на 8000 световых лет. Изображение принималось в трех различных длинах волн, чтобы отразить газовый состав туманности. Азот показан красным цветом, водород — зеленым и вдвойне ионизированный кислород — синим. Точный процесс формирования пока неясен
Туманность Краба является одним из наиболее интересных объектов в небе. Это — остатки огромного звездного взрыва. Она была отображена во всех длинах волны от радио до гамма-лучей. Центральная звезда — пульсар — быстро вращающаяся нейтронная звезда. Она вращается настолько быстро, что импульс замечен каждые 0.033 секунды. В оптических длинах волны эта центральная звезда имеет 16-ую величину и находится вне досягаемости всех кроме наиболее мощных телескопов
Млечный Путь — это наша собственная галактика, видимая изнутри. Галактика представляет собой гигантскую звездную систему, состоящую приблизительно из 200 миллиардов звезд галактика Млечного пути — имеет приблизительно 100 000 световых лет в поперечнике и содержит более чем 100 миллиардов звезд. Галактика имеет форму линзы диаметром 80 тысяч световых лет и толщиной
30 тысяч световых лет
На этом снимке показана спиральная галактика Эллиптические галактики образуются в результате столкновений между спиральными галактиками.
Столкновение нашей Галактики Примерно через три миллиарда лет наша Галактика столкнётся с Андромедой, так как вот уже почти столетие, как астрономы знают, что обе галактики приближаются друг к другу со скоростью 500 000 километров в час.
Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью . В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»! Что было до Большого взрыва?
Загадки теории Большого взрыва 1.Как гласит теория большого взрыва, Вселенная возникла из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Это состояние, называемое сингулярностью, не поддается математическому описанию. 2. Теория большого взрыва не может объяснить существование галактик. Современные версии космологических теорий предсказывают только появление однородного облака газа. 3. Проблема “недостающей массы”. Измеряя световую энергию, излучаемую Млечным Путем, можно приблизительно определить массу нашей галактики. Она равняется массе ста миллиардов Солнц. Однако, изучая закономерности взаимодействия того же Млечного Пути с близлежащей галактикой Андромеды, мы обнаружим, что наша галактика притягивается к ней так, как будто весит в десять раз больше
Источник
Презентация по астрономии «Теория большого взрыва»
Описание презентации по отдельным слайдам:
Теория Большого Взрыва утверждает, что вся физическая вселенная – материя, энергия и даже 4 измерения пространства и времени возникли из состояния бесконечных значений плотности, температуры и давления. Вселенная возникла из объема меньшего, чем точка и продолжает расширяться. Теория Большого Взрыва теперь общепринята, так как она объясняет оба наиболее значительных факта космологии: расширяющуюся Вселенную и существование космического фонового излучения.
Это событие произошло от 13 до 20 миллиардов лет назад. Можно воспользоваться известными законами физики и просчитать в обратном направлении все состояния, в которых находилась Вселенная, начиная с 10-43 секунд после Большого Взрыва. В течение первого миллиона лет вещество и энергия во Вселенной сформировали непрозрачную плазму, иногда называемую первичным огненным шаром. К концу этого периода расширение Вселенной заставило температуру опуститься ниже 3000 K, так что протоны и электроны смогли объединяться, образуя атомы водорода. На этой стадии Вселенная стала прозрачной для излучения. Плотность вещества теперь стала выше плотности излучения, хотя раньше ситуация была обратной, что и определяло скорость расширения Вселенной. Фоновое микроволновое излучение — все, что осталось от сильно охлажденного излучения ранней Вселенной.
Начало звездообразования Это изображение показывает предположение о том, как выглядела очень молодая вселенная (меньше чем 1 миллиард лет), когда начиналось формирование звезд, преобразовывая исходный водород в бесчисленные звезды.
Первые галактики начали формироваться из первичных облаков водорода и гелия только через один или два миллиарда лет. Термин «Большой Взрыв» может применяться к любой модели расширяющейся Вселенной, которая в прошлом была горячей и плотной Большое Магелланово Облако — галактика, которая сопровождает нашу собственную. Она видима невооруженным взглядом как туманная, удлиненная область неба. Оно расположено на расстоянии в 160,000 световых лет и охватывает область в 20,000 световых лет. Его видимая часть — десятая часть Млечного пути
Туманность Песочных часов — молодая планетарная туманность удаленная от нас приблизительно на 8000 световых лет. Изображение принималось в трех различных длинах волн, чтобы отразить газовый состав туманности. Азот показан красным цветом, водород — зеленым и вдвойне ионизированный кислород — синим. Точный процесс формирования пока неясен
Туманность Краба является одним из наиболее интересных объектов в небе. Это — остатки огромного звездного взрыва. Она была отображена во всех длинах волны от радио до гамма-лучей. Центральная звезда — пульсар — быстро вращающаяся нейтронная звезда. Она вращается настолько быстро, что импульс замечен каждые 0.033 секунды. В оптических длинах волны эта центральная звезда имеет 16-ую величину и находится вне досягаемости всех кроме наиболее мощных телескопов
Млечный Путь — это наша собственная галактика, видимая изнутри. Галактика представляет собой гигантскую звездную систему, состоящую приблизительно из 200 миллиардов звезд галактика Млечного пути — имеет приблизительно 100 000 световых лет в поперечнике и содержит более чем 100 миллиардов звезд. Галактика имеет форму линзы диаметром 80 тысяч световых лет и толщиной
30 тысяч световых лет
На этом снимке показана спиральная галактика Эллиптические галактики образуются в результате столкновений между спиральными галактиками.
Столкновение нашей Галактики Примерно через три миллиарда лет наша Галактика столкнётся с Андромедой, так как вот уже почти столетие, как астрономы знают, что обе галактики приближаются друг к другу со скоростью 500 000 километров в час.
Согласно этой теории, всё наблюдаемое пространство расширяется. Но что же было в самом начале? Всё вещество в Космосе в какой-то начальный момент было сдавлено буквально в ничто — спрессовано в одну-единственную точку. Оно имело фантастически огромную плотность — её практически невозможно себе представить, она выражается числом, в котором после единицы стоят 96 нулей, — и столь же невообразимо высокую температуру. Астрономы назвали такое состояние сингулярностью. В силу каких-то причин это удивительное равновесие было внезапно разрушено действием гравитационных сил — трудно даже вообразить, какими они должны были быть при бесконечно огромной плотности «первовещества»! Что было до Большого взрыва?
Загадки теории Большого взрыва 1.Как гласит теория большого взрыва, Вселенная возникла из точки с нулевым объемом и бесконечно высокими плотностью и температурой. Это состояние, называемое сингулярностью, не поддается математическому описанию. 2. Теория большого взрыва не может объяснить существование галактик. Современные версии космологических теорий предсказывают только появление однородного облака газа. 3. Проблема “недостающей массы”. Измеряя световую энергию, излучаемую Млечным Путем, можно приблизительно определить массу нашей галактики. Она равняется массе ста миллиардов Солнц. Однако, изучая закономерности взаимодействия того же Млечного Пути с близлежащей галактикой Андромеды, мы обнаружим, что наша галактика притягивается к ней так, как будто весит в десять раз больше
Номер материала: ДБ-1662871
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Петербургская школьница набрала 300 баллов на ЕГЭ
Время чтения: 1 минута
В России предложили выдавать ряду школьников сертификаты на курсы по подготовке к ЕГЭ
Время чтения: 1 минута
Второе высшее образование в творческих вузах станет бесплатным
Время чтения: 1 минута
Минобрнауки рекомендовало своим организациям вакцинировать сотрудников
Время чтения: 1 минута
В России подсчитали траты родителей на подготовку школьников к ЕГЭ
Время чтения: 4 минуты
Урюпинскому школьнику отказались выдать аттестат из-за долга за питание
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Источник
Большой взрыв вселенной. Большо́й взрыв ( от англ. Big Bang) гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном. — презентация
Презентация была опубликована 6 лет назад пользователемМарья Бахтина
Похожие презентации
Презентация на тему: » Большой взрыв вселенной. Большо́й взрыв ( от англ. Big Bang) гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном.» — Транскрипт:
1 Большой взрыв вселенной
2 Большо́й взрыв ( от англ. Big Bang) гипотетическое начало расширения Вселенной, перед которым Вселенная находилась в сингулярном состоянии. Теория Большого взрыва в настоящее время является общепризнанной парадигмой физической космологии, наилучшим образом объясняющей весь массив наблюдательной информации
4 История термина Первоначально теория Большого взрыва называлась « динамической эволюционирующей моделью ». Впервые термин « Большой взрыв » применил Фред Хойл в своей лекции в 1949 ( сам Хойл придерживался гипотезы « непрерывного рождения » материи при расширении Вселенной ). Он сказал : « Эта теория основана на предположении, что Вселенная возникла в процессе одного — единственного мощного взрыва и потому существует лишь конечное время … Эта идея Большого взрыва кажется мне совершенно неудовлетворительной ».
6 Современные представления теории Большого взрыва По современным представлениям, наблюдаемая нами сейчас Вселенная возникла 13,7 ± 0,2 млрд лет назад из некоторого начального « сингулярного » состояния с бесконечной температурой и плотностью, и с тех пор непрерывно расширяется и охлаждается. Ранняя Вселенная представляла собой однородную и изотропную среду с необычайно высокой плотностью энергии, температурой и давлением. В результате расширения и охлаждения во Вселенной произошли фазовые переходы, аналогичные конденсации жидкости из газа, но применительно к элементарным частицам. Приблизительно через 1035 секунд после наступления Планковской эпохи ( Планковское время 1043 секунд после Большого взрыва.) фазовый переход вызвал экспоненциальное расширение Вселенной. Данный период получил название Космической инфляции. После окончания этого периода строительный материал Вселенной представлял собой кварк — глюонную плазму. По прошествии времени температура упала до значений, при которых стал возможен следующий фазовый переход, называемый бариогенезисом. На этом этапе кварки и глюоны объединились в барионы, такие как протоны и нейтроны. При этом одновременно происходило асимметричное образование как материи, которая превалировала, так и антиматерии, которые взаимно аннигилировали, превращаясь в излучение.
7 Дальнейшее падение температуры привело к следующему фазовому переходу образованию физических сил и элементарных частиц в их современной форме. После чего наступила эпоха нуклеосинтеза, при которой протоны, объединяясь с нейтронами, образовали ядра дейтерия, гелия -4 и ещё нескольких лёгких изотопов. После дальнейшего падения температуры и расширения Вселенной наступил следующий переходный момент, при котором гравитация стала доминирующей силой. Через 380 тысяч лет после Большого взрыва температура снизилась настолько, что стало возможным существование атомов водорода ( до этого процессы ионизации и рекомбинации протонов с электронами находились в равновесии ). После эры рекомбинации материя стала прозрачной для излучения, которое, свободно распространяясь в пространстве, дошло до нас в виде реликтового излучения.
9 Начальное состояние Вселенной Экстраполяция наблюдаемого расширения Вселенной назад во времени приводит при использовании общей теории относительности и некоторых других альтернативных теорий гравитации к бесконечной плотности и температуре в конечный момент времени в прошлом. Более того, теория не даёт никакой возможности говорить о чём — либо, что предшествовало этому моменту ( лишь потому, что Большой взрыв радикально изменил законы Вселенной : при этом теория вовсе не отрицает возможность существования чего — либо до Большого взрыва ), а размеры Вселенной тогда равнялись нулю она была сжата в точку. Это состояние называется космологической сингулярностью и сигнализирует о недостаточности описания Вселенной классической общей теорией относительности. Насколько близко к сингулярности можно экстраполировать известную физику, является предметом научных дебатов, но практически общепринято, что допланковскую эпоху рассматривать известными методами нельзя. Многие учёные полушутя — полусерьёзно называют космологическую сингулярность « рождением » ( или « сотворением ») Вселенной. Невозможность избежать сингулярности в космологических моделях общей теории относительности была доказана в числе прочих теорем о сингулярностях Р. Пенроузом и С. Хокингом в конце ых годов. Её существование является одним из стимулов построения альтернативных теорий гравитации.
11 Дальнейшая эволюция Вселенной Согласно теории Большого взрыва, дальнейшая эволюция зависит от измеримого экспериментально параметра средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого ( известного из теории ) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда — нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной. Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа порядка сотой доли секунды от « начала мира ». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.
12 Это изображение описывает развитие Вселенной со времени Большого взрыва, до » наших » дней. От появления элементарных частиц и атомов, до современных галактик и планет.
14 История открытия Большого взрыва 1916 вышла в свет работа физика Альберта Эйнштейна « Основы общей теории относительности », которой он завершил создание релятивистской теории гравитации Эйнштейн на основе своих уравнений поля развил представление о пространстве с постоянной во времени и пространстве кривизной, ввёл космологическую постоянную Λ. В. де Ситтер выдвинул космологическую модель Вселенной ( модель де Ситтера ) в работе « Об эйнштейновской теории гравитации и её астрономических следствиях » советский математик и геофизик Ал. Ал. Фридман нашёл нестационарные решения гравитационного уравнения Эйнштейна и предсказал расширение Вселенной немецкий математик Г. Вейль отметил, что если в модель де Ситтера, которая соответствовала пустой Вселенной, поместить вещество, она должна расширяться. О недостаточности Вселенной де Ситтера говорилось и в книге А. Эддингтона, опубликованной в том же году К. Вирц обнаружил слабую корреляцию между угловыми диаметрами и скоростями удаления галактик и предположил, что она может быть связана с космологической моделью де Ситтера, согласно которой скорость удаления отдалённых объектов должна возрастать с их расстоянием. 1924
15 1925 К. Э. Лундмарк и затем Штремберг, повторившие работу Вирца, не получили убедительных результатов, а Штремберг даже заявил, что « не существует зависимости лучевых скоростей от расстояния от Солнца ». О расширении непустой Вселенной говорилось и в первой космологической работе бельгийского теоретика Жоржа Леметра, опубликованной в этом же году опубликована статья Леметра « Однородная Вселенная постоянной массы и возрастающего радиуса, объясняющая радиальные скорости внегалактических туманностей ». Леметр был первым, кто чётко заявил, что объекты, населяющие расширяющуюся Вселенную, распределение и скорости движения которых и должны быть предметом космологии это не звёзды, а гигантские звёздные системы, галактики января в Труды Национальной академии наук США поступили статьи Хьюмасона о лучевой скорости NGC 7619 и Хаббла, называвшаяся « Связь между расстоянием и лучевой скоростью внегалактических туманностей » выходит работа Г. А. Гамова о « горячей вселенной », построенная на теории расширяющейся вселенной Фридмана 1948
16 1955 Советский радиоастроном Тигран Шмаонов экспериментально обнаружил шумовое СВЧ излучение с температурой около 3K американские радиоастрономы А. Пензиас и Р. Вилсон открыли космический фон излучения и измерили его температуру : она оказалась равной 3 К ! Теория Гамова была полностью подтверждена. В настоящее время это излучение носит название реликтового ; термин ввёл советский астрофизик И. С. Шкловский спутник WMAP с высокой степенью точности измеряет анизотропию реликтового излучения. С высокой точностью был установлен возраст Вселенной и распределение по массам различных видов материи ( барионная материя 4 %, тёмная материя 23 %, тёмная энергия 73 %). 2003
18 Р аботу выполнила : ученица 11 « А » к ласса Капитонова А лиса
Источник