Меню

Теория нестационарности вселенной сущность теории

Теория нестационарности вселенной сущность теории

Вселенная Фридмана—одна из космологических моделей,

удовлетворяющих полевым уравнениям общей теории относительности, первая из нестационарных моделей Вселенной. Модель Фридмана описывает однородную изотропную Вселенную с веществом, обладающую положительной, нулевой или отрицательной постоянной кривизной.

Нестационарность Вселенной была подтверждена открытием зависимости красного смещения галактик от расстояния. Независимо от Фридмана, описываемую модель позднее разрабатывали Леметр, Робертсон и Уокер, поэтому решение полевых уравнений Эйнштейна, описывающее однородную изотропную Вселенную с постоянной кривизной, называют моделью Фридмана-Леметра-Робертсона-Уокера.

Теорию Большого Взрыва предложили в 20-х годах нашего века ученые Фридман и Леметр, в сороковых годах ее дополнил и переработал Гамов. Согласно этой теории, когда-то давным-давно наша Вселенная представляла собой бесконечно малый сгусток, сверхплотный и раскаленный до немыслимых температур. Это нестабильное образование внезапно взорвалось, пространство быстро расширилось, а температура разлетающихся частиц, обладающих высокой энергией, начала снижаться. Примерно после первого миллиона лет атомы двух самых легких элементов, водорода и гелия, стали стабильными. Под действием сил притяжения начали концентрироваться облака материи. В результате сформировались галактики, звезды и другие небесные тела. Звезды старели, взрывались сверхновые, после чего появлялись более тяжелые элементы. Они формировали звезды более позднего поколения, такие, как наше Солнце.

В 1922 г. советский математик А. А. Фридман, анализируя уравнения общей теории относительности Эйнштейна, пришёл к выводу, что Вселенная не может находиться в стационарном состоянии — она должна либо расширяться, либо пульсировать. В дальнейшем выводы Фридмана получили подтверждение в астрономических наблюдениях, обнаруживших в спектрах галактик так называемое красное смещение спектральных линий, что соответствует взаимному удалению этих звездных систем. [1, с. 44]

(1. Зельдович Я.Б., И.Д. Новиков. Строение и эволюция Вселенной. М.: Наука, 1989. – 736 с.)

Модели Фридмана

Уравнения общей теории относительности, описывающие эволюцию Вселенной, слишком сложны, чтобы решить их в деталях. А потому Фридман предложил вместо этого принять два простых допущения: (1) Вселенная выглядит совершенно одинаково во всех направлениях; (2) это условие справедливо для всех ее точек. На основе общей теории относительности и этих двух простых предположений Фридману удалось показать, что мы не должны ожидать от Вселенной стационарности. На самом деле он в 1922 г. точно предсказал то, что Эдвин Хаббл открыл несколько лет спустя.

Предположение о том, что Вселенная выглядит одинаковой во всех направлениях, конечно же, не совсем отвечает реальности. Например, звезды нашей Галактики составляют на ночном небе отчетливо видимую светящуюся полосу, называемую Млечным Путем. Но если мы обратим свой взгляд

на далекие галактики, число их, наблюдаемое в разных направлениях, окажется примерно одинаковым. Так что Вселенная, похоже, сравнительно однородна во всех направлениях, если рассматривать ее в космических масштабах, сопоставимых с расстояниями между галактиками.

Несмотря на то что модель Фридмана была удачной и оказалась соответствующей результатам наблюдений Хаббла, она долгое время оставалась почти неизвестной на Западе. О ней узнали лишь после того, как в 1935 г. американский физик Говард Робертсон и английский математик Артур Уокер разработали сходные модели для объяснения открытого Хабблом однородного расширения Вселенной.

Хотя Фридман предложил только одну модель, на основе двух его фундаментальных предположений можно построить три разные модели. В первой из них (именно ее и сформулировал Фридман) расширение происходит настолько медленно, что гравитационное притяжение между галактиками постепенно еще больше замедляет его, а потом и останавливает.

Галактики тогда начинают двигаться друг к другу, и Вселенная сжимается. Расстояние между двумя соседними галактиками сначала возрастает от нуля до некоторого максимума, а затем вновь уменьшается до нуля.

Во втором решении скорость расширения столь велика, что тяготение никогда не может его остановить, хотя и несколько замедляет. Разделение соседних галактик в этой модели начинается с нулевого расстояния, а затем они разбегаются с постоянной скоростью.

Читайте также:  Нестационарная вселенная фридмана презентация

Наконец, существует третье решение, в котором скорость расширения Вселенной достаточна лишь для того, чтобы предотвратить обратное сжатие, или коллапс. В этом случае разделение также начинается с нуля и возрастает бесконечно. Однако скорость разлета постоянно уменьшается, хотя и никогда не достигает нуля.

Замечательной особенностью первого типа модели Фридмана является то, что Вселенная не бесконечна в пространстве, но пространство не имеет границ. Гравитация в этом случае настолько сильна, что пространство искривляется, замыкаясь само на себя наподобие поверхности Земли. Путешествующий по земной поверхности в одном направлении никогда не встречает непреодолимого препятствия и не рискует свалиться с «края Земли», а попросту возвращается в исходную точку. Таково пространство в первой модели Фридмана, но вместо присущих земной поверхности двух измерений оно имеет три. Четвертое измерение — время — обладает конечной протяженностью, но его можно уподобить линии с двумя краями или границами, началом и концом.

Источник

Модели нестационарной Вселенной

В 1922 г. советский ученый А. А. Фридман разработал первую нестационарную модель Вселенной, которая также была основана на уравнениях общей теории относительности. Работы Фридмана остались в то время незамеченными, а А. Эйнштейн отвергал возможность расширения Вселенной. Тем не менее, уже в 1929 г. астроном Эдвин Хаббл открыл, что галактики, находящиеся рядом с Млечным путем, удаляются от него, а скорость их движения при этом все время остается пропорциональной расстоянию до нашей галактики. Согласно этому открытию, звезды и галактики постоянно «разбегаются» друг от друга, а следовательно, происходит расширение Вселенной. В итоге Эйнштейн согласился с выводами Фридмана, а позднее говорил, что именно советский ученый стал основателем теории расширяющейся Вселенной. Эта теория не находится в противоречии с общей теорией относительности, но если Вселенная расширяется, то должно было произойти некое событие, приведшее к разбеганию звезд и галактик. Это явление очень напоминало взрыв, поэтому ученые и назвали его «Большим взрывом». Астрономы употребляют термин «Большой взрыв» в двух взаимосвязанных значениях. С одной стороны этим термином называют само событие, ознаменовавшее зарождение Вселенной около 15 миллиардов лет назад; с другой — весь сценарий ее развития с последующим расширением и остыванием. Однако, как считал Фридман, если Вселенная появилась в результате Большого взрыва, то должна существовать Высшая первопричина (или Конструктор), позволяющая этому взрыву произойти. Этот вывод является убедительным лишь при эмпирическом подходе к действительности. Фундаментальные философские картины мира обходятся без допущения чьей-либо воли (Бога-творца либо абсолютной идеи).

Модель расширяющейся Вселенной вскоре получила экспериментальное подтверждение. Американский астроном и астрофизик Э. Хаббл обнаружил, что расстояние между галактиками увеличивается, т.е. они «разбегаются». Скорость «разбегания» Хаббл измерял по «красному смещению» в спектрах излучения галактик.

Расчеты Хаббла подтвердили гипотезу о расширении видимой части Вселенной.

Теория Большого взрыва строится на том, что все сущее во Вселенной ранее находилось в сингулярном состоянии, т.е. в состоянии, характеризующемся бесконечной температурой, плотностью и давлением. В состоянии сингулярности не действует ни один современный закон физики, пространство сингулярности сосредотачивалось в микроскопически малой частичке, которая в какой-то момент времени пришла в нестабильное состояние, в результате чего и произошел Большой взрыв. Изначально теория Большого взрыва носила название «динамическая эволюционирующая модель». Термин «Большой взрыв» получил широкое распространение в 1949 г. после публикации работ ученого Ф. Хойла. На данный момент теория Большого взрыва разработана настолько хорошо, что ученые берутся описать процессы, которые начали происходить во Вселенной через 10 —43 сек. после Большого взрыва. Существует несколько доказательств теории Большого взрыва, одним из которых является реликтовое излучение, пронизывающее всю Вселенную и возникшее в результате Большого взрыва благодаря взаимодействию частиц. Реликтовое излучение может рассказать о первых микросекундах после рождения Вселенной, о тех временах, когда она находилась в горячем состоянии, а галактики, звезды и планеты еще не образовались. Изначально реликтовое излучение также было только теорией, и вероятность его существования рассматривал Г. А. Гамов в 1948 году. Измерить реликтовое излучение и доказать действительность его существования смогли только в 1964 г. американские ученые благодаря новому прибору, который обладал необходимой точностью. На основе реликтового излучения исследовались разные сегменты космоса с помощью наземных и космических обсерваторий, что позволило увидеть, какой была Вселенная в момент своего рождения.

Читайте также:  Вселенная что за видимым горизонтом

Еще одним подтверждением Большого взрыва является космологическое красное смещение, которое заключается в уменьшении частот излучения, что доказывает удаление звезд и галактик друг от друга вообще (разбегание галактик), и от Млечного пути в частности. Теория Большого взрыва ответила на множество вопросов о возникновении нашей Вселенной, но и вместе с тем стала причиной появления новых загадок, которые остаются без ответов и сейчас. Например, что же стало причиной Большого взрыва, почему точка сингулярности стала нестабильной, что было до Большого взрыва, как появилось время и пространство?

Из чего образовалась Вселенная? Религия отвечает на этот вопрос – из «ничего». В научной терминологии «ничто» это вакуум.

В ХIХ в. под вакуумом в физике понимали пустоту, сегодня вакуум – это форма материи, способная при определенных условиях порождать вещественные частицы. «Пустой» вакуум оказывается заполненным определенными частицами. Можно ли их назвать виртуальными? В любом случае вакуум не безжизнен и безлик, а полон энергии.

Еще одним загадочным объектом космоса является т.н. черное тело и его излучение. В 1964 году американские физики Арно Пензиас и Роберт Уилсон обнаружили, что Вселенная наполнена электромагнитным излучением в микроволновом диапазоне частот. Последовавшие измерения показали, что это характерное классическое излучение черного тела, свойственное объектам с температурой около –270°С (3 К), т. е. всего на три градуса выше абсолютного нуля.

Простая аналогия поможет вам интерпретировать этот результат. Представьте, что вы сидите у камина и смотрите на угли. Пока огонь горит ярко, угли кажутся желтыми. По мере затухания пламени угли тускнеют до оранжевого цвета, затем до темно-красного. Когда огнь почти затух, угли перестают испускать видимое излучение, однако, поднеся к ним руку, вы почувствуете жар, что означает, что угли продолжают излучать энергию, но уже в инфракрасном диапазоне частот. Чем холоднее объект, тем ниже излучаемые им частоты и больше длина волн (см. Закон Стефана—Больцмана). По сути, Пензиас и Уилсон определили температуру «космических углей» Вселенной после того, как она остывала на протяжении 15 миллиардов лет: ее фоновое излучение оказалось в диапазоне микроволновых радиочастот.

Все эти нерешенные проблемы свидетельствуют о том, что теория Большого взрыва неполна. Долгое время казалось, что продвинуться далее уже невозможно. Только в 80-х годах XX века благодаря работам российских физиков Э. Глинера и А. Старобинского, а также американца А. Гуса было описано новое явление — сверх-быстрое инфляционное расширение Вселенной. Описание этого явления основывается на хорошо изученных разделах теоретической физики — общей теории относительности Эйнштейна и квантовой теории поля. Сегодня считается общепринятым, что именно такой период, получивший название «инфляция», предшествовал Большому взрыву.

Согласно теории Большого взрыва, дальнейшая эволюция зависит от экспериментально измеримого параметра — средней плотности вещества в современной Вселенной. Если плотность не превосходит некоторого (известного из теории) критического значения, Вселенная будет расширяться вечно, если же плотность больше критической, то процесс расширения когда-нибудь остановится и начнётся обратная фаза сжатия, возвращающая к исходному сингулярному состоянию. Современные экспериментальные данные относительно величины средней плотности ещё недостаточно надёжны, чтобы сделать однозначный выбор между двумя вариантами будущего Вселенной.

Читайте также:  Параллельная вселенная это где

Есть ряд вопросов, на которые теория Большого взрыва ответить пока не может, однако основные её положения обоснованы надёжными экспериментальными данными, а современный уровень теоретической физики позволяет вполне достоверно описать эволюцию такой системы во времени, за исключением самого начального этапа — порядка сотой доли секунды от «начала мира». Для теории важно, что эта неопределённость на начальном этапе фактически оказывается несущественной, поскольку образующееся после прохождения данного этапа состояние Вселенной и его последующую эволюцию можно описать вполне достоверно.

Структура Вселенной

Человечеству недоступно для обозрения 85% объема Вселенной, как это установлено после запуска в космическое околоземное пространство электронного телескопа «Хаббл»: оказывается, на 85% Вселенная состоит из так называемого «темного вещества», которое не испускает излучения достаточной для наблюдения интенсивности, но оказывает гравитационное влияние на излучение отдаленных галактик. Неудивительно, что вопросы состава и природы возникновения этого вещества до сих пор вызывают ожесточенные споры. Строение этого прежде неизвестного вещества пока никак не изучено. Заметим, что на Земле частицы темного вещества также еще не были зарегистрированы, хотя результаты отдельных экспериментов на Большом адронном коллайдере дают повод говорить об этом.

Уже исследованная часть Вселенной дает нам возможность представить ее структуру следующим образом:

Метагалактика – совокупность звездных систем – галактик. Для Метагалактики характерна ячеистая (сетчатая, пористая) структура. Галактики в ней распределены не равномерно, а по границам ячеек, внутри которых галактик почти нет.

Возраст Метагалактики близок к возрасту Вселенной и составляет приблизительно 15 млрд лет.

Галактики – гигантские системы, состоящие из скоплений звезд и туманностей.

По форме галактики делятся на три типа:

Эллиптические галактики наиболее простые по структуре: распределение звезд в них равномерно убывает от центра.

Спиральные галактики – в форме спирали, включают в себя спиральные ветви. Это самый многочисленный тип галактик, к которому относится и наша Галактика – Млечный путь.

Неправильные галактики составляют примерно 5% всех галактик. У этих галактик отсутствует симметрия формы, а также они характеризуются мощным радиоизлучением. Это радиогалактики. Все галактики излучают в радиодиапазоне с большим различием по мощности. Светимость радиогалактик в радиодиапазоне сравнима со светимостью в оптическом диапазоне.

Эллиптические и спиральные галактики называются еще «правильными». Они включают в себя горячие и яркие звезды и состоят из центрального ядра и сферической периферии (в виде спиральных ветвей или эллиптического диска).

В ядре сосредоточены самые старые звезды, возраст которых равен возрасту галактики. Звезды среднего и молодого возраста расположены в диске галактики.

Звезды и туманности вместе с галактикой принимают участие в расширении Вселенной и участвуют во вращении галактики вокруг оси.

Звезды.

Современная Вселенная содержит видимое вещество преимущественно в звездном состоянии. 97% видимой массы в нашей Галактике сосредоточено в звездах, которые представляют собой гигантские плазменные образования различной величины, температуры, с разной характеристикой движения. По современным оценкам динамическая (скрытая) масса скоплений галактик (как мы уже говорили) в десятки раз превосходит видимую массу. Вероятным носителем скрытой массы является нейтрино.

Возраст звезд меняется от 15 млрд лет до сотен тысяч (самые молодые звезды).

Есть звезды, которые сегодня находятся в протозвездной стадии, т.е. они еще не стали настоящими звездами.

Рождение звезд происходит в газово-пылевых туманностях под действием гравитационных, магнитных и других сил, причем рождается не отдельная звезда, а звездные ассоциации.

Основная эволюция вещества во Вселенной происходила и происходит в недрах звезд, водород превращается в гелий, при этом выделяется огромное количество энергии, уносимой излучением звезд. В итоге на завершающем этапе эволюции звезды превращаются в инертные «мертвые» звезды.

Источник

Adblock
detector