Теория одного атома во вселенной
Одна интересная теория гласит, что кроме нашей Вселенной существует еще 10 500 миров. Для написания такого числа обычным способом нужно 500 нулей. Чтобы представить себе, много это или мало, достаточно сказать, что количество атомов во всех звездах, галактиках и планетах нашей Вселенной можно записать числом, которое потребует не больше 100 нулей. Всего-то!
Советский Союз в 20 веке дал миру много выдающихся ученых в области физики. Но в Советском Союзе главенствующей идеологией был атеизм. Это означало, что упоминание о боге сразу ставило крест на любой карьере. Поэтому советским физикам было запрещено задавать вопрос: «А что было до Большого Взрыва, от которого произошла Вселенная?». Сама теория Большого Взрыва была признана и доказана. Но вопрос «Что было до Большого взрыва?» автоматически приводил к первоисточнику, очень напоминающему бога. Ведь даже у самого первого Взрыва тоже должна быть своя Причина.
А сегодняшние знания в науке уже вынуждают ученых выдвигать гипотезы, где учитывается и то, что было «до взрыва», и что существует «за пределами материи». Посмотрите, какими терминами сегодня оперируют физики (я выбрал только самые понятные): «черные дыры», «виртуальные частицы», «невидимая материя», «стрела времени», «схлопывание материального мира из вероятностного состояния», «наблюдатель творит вселенную наблюдением», «суперструны как свернутые измерения многомерного мира».
Интересна теория суперструн, где вместо самой маленькой элементарной частицы началом материи выступает вибрирующая струна, объединяющая в себе свойства волны и частицы. Сегодня теория суперструн, претендующая на новую теорию всего, утверждает, что все вещество Вселенной возникает посредством струн. Струну еще нельзя назвать материальным объектом, это некая вибрация, посредник между материей и Ничто. В некоторых моделях мироздания длина струны может достигать размера Вселенной, а толщина – в миллионы раз меньше размера электрона. Для сравнения, электрон меньше пылинки во столько раз, во сколько раз пылинка меньше галактики. При этом в струне заключен такой потенциал энергии, что один ее метр весит два миллиона масс планеты Земля.
Кто играет на суперструнах? Мы и играем! Собственным сознанием! Суперструны – не результат фантазии или философских размышлений. Этот мир не может быть описан произвольно. В этой поражающей воображение фантастической модели соблюдены все условия самопоследовательности, то есть все выводы увязаны не только через логические последствия, но и через математические уравнения. В данной модели согласованы все до сих пор открытые законы природы и наблюдаемые в экспериментах явления. Эта самопоследовательность вынудила прийти к выводу о том, что существует многомерная Вселенная, включающая несколько измерений, увязанных через струну. Что наш мир – проекция структур более высокой размерности. Пришлось сделать и другие выводы, противоречащие классическому пониманию, а именно признать существование антимиров, где время течет вспять, а также признать и возможность мгновенной передачи информации.
По законам материального мира максимально возможной скоростью передачи информации является скорость распространения света, а именно 300 тысяч километров в секунду. Думаете, это быстро? Для Земли да, а для Вселенной это очень маленькая скорость. До ближайшей к нам звезды свет должен лететь несколько лет. А до некоторых звезд свету потребуется лететь миллиарды лет.
Передать информацию быстрее скорости света невозможно. Представьте, что вы находитесь в центре Вселенной и вам нужно получить информацию о том, что происходит на ее краю. Размер наблюдаемой части Вселенной 40 миллиардов световых лет, следовательно, от нас до ее края 20 миллиардов. Вы посылаете сигнал, а затем ждете ответа.
Свету потребуется на весь путь до края Вселенной и обратно 40 миллиардов лет. Долго. А вот что говорит парадокс Эйнштейна – Подольского – Розена (ЭПР): любые изменения в какой-то одной подсистеме в тот же самый момент времени сказываются на всех остальных частях системы, независимо от расстояния. Он подтверждается экспериментами. Тогда налицо мгновенная передача информации.
Допустим, информацию из какой-то точки мы получаем мгновенно, из нескольких точек – мгновенно, из всех точек пространства, независимо от расстояния, – мгновенно. Следовательно, практически мы находимся в одной точке. Следуя такой логике, приходим к понятию сингулярности – состояния, где Вселенная одновременно является бесконечно большим пространством и точкой.
Понятие сингулярности в одном из буддистских трактатов описывается так: «Будучи маленьким колесиком Вселенной, я наблюдаю, как вращаются все остальные колесики, являясь всеми ими». «Движение ангелов может быть непрерывным и, если угодно, прерывным. Ангел может быть в один момент в одном месте, а в другой момент – в другом, без всякого промежутка времени» (Фома Аквинский).
Есть и другие следствия, которые выходят из возможности мгновенной передачи информации. Некоторые звезды находятся от нас на огромных расстояниях, свет от них доходит до нас миллионы и миллиарды лет. Мы наблюдаем их такими, какими они были миллионы лет назад. Обладая способностью к мгновенной передаче сигнала, можно узнать, что происходит со звездой сейчас или, перехватив свет в пути и вернувшись с прочитанным сигналом обратно, узнаем, что мы увидим через сто, двести или тысячу лет. А если догнать и прочитать световой сигнал, прошедший мимо нас и улетевший дальше, то мы узнаем прошлое, информацию о котором он несет. Таким образом, мы можем одновременно знать прошлое и будущее или наблюдать все события одновременно. Прошлое, настоящее и будущее уже существуют здесь и сейчас.
И мы можем влиять на прошлое. Вот что удивительно. А катарсис психотравмирующих эпизодов детства и предыдущих жизней, разве это не влияние на прошлое?
С мистическим пониманием мира согласуется и еще одна бурно развивающаяся наука – синергетика. Синергетика описывает процессы в бесконечно сложных системах. Выводы и математический аппарат синергетики ныне находят применение во всех областях жизни: биологии, социологии, экономике, космологии, искусстве.
Хаос в синергетике рассматривается как очень пластичное состояние, малейшее влияние на которое приводит к каскаду последствий, выстраивающихся в упорядоченность. Именно в хаосе неуловимое намерение формирует мощную последовательность. Вот почему с помощью тонкой энергии сознания можно формировать плотную реальность, если мы проходим через состояние неопределенности и отсутствия контроля (хаоса).
Источник
Вселенная — атом: возможно ли?
Считается, что границы наблюдения человека в космосе сейчас составляют примерно 93 миллиарда световых лет. Оставшиеся же масштабы вселенной нашему разуму пока не удается ни осознать, ни изучить. Тем не менее многие деятели науки сегодня считают, что наша галактика и прочие существующие в космосе тела помещаются лишь в пределы одного атома. Давайте разбираться, возможно ли это.
Согласно имеющимся у ученых сведениям, недоступные нашему взору просторы вселенной составляют в диаметре 20 триллионов световых лет, при этом подавляющую часть этого пространства занимают пустоты. Однако и они, и другие космические тела состоят из мельчайших частиц – атомов. Именно эти частицы являют собой материю, из которой соткано все наше мироздание: и огромные далекие планеты, и наша атмосфера, и мы – люди.
Атомы настолько малы, что даже самые современные микроскопы не позволяют сделать их подробный и четкий снимок, поэтому с уверенностью утверждать, что мы знаем о них все, было бы неправильно. На сегодняшний день мы не можем со стопроцентной точностью сказать, как выглядят эти частицы: воссоздание их наиболее полного образа происходит согласно всевозможным теоретическим данным. Впрочем, кое-что об атоме мы все-таки знаем: он состоит из еще более мелких частиц, таких как протоны, нейтроны, кварки и электроны. Также известно, что организм отдельно взятого взрослого представителя человечества состоит из порядка 7 октиллионов атомов.
В 1911 году Эрнест Резерфорд впервые обнародовал свою «Планетарную модель атома», созданную им на основании результатов эксперимента Гейгера и Марсдена по рассеиванию альфа-частиц в тонкой золотой фольге. Этот знаменитый британский физик представил строение атома как положительно заряженное ядро, сосредоточившее в себе почти всю массу частицы, вокруг которого вращаются электроны. Согласитесь, весьма похоже на устройство нашей солнечной системы. Именно эта структура заставила ученых впервые задуматься над теорией микро-вселенной.
Чтобы эта теория не казалась вам слишком уж фантастичной, следует задуматься о том, насколько относительны размеры любого существующего в мире объекта. К примеру, муравьи и другие насекомые кажутся нам нереально маленькими. А что же они думают о нас? Понимают ли, что живут в мире гигантов? Вероятнее всего, нет, ведь наш мир не пропорционален их размерам. Возможно, что их разум даже неспособен осознать людей как живых существ, каким-либо образом оказывающих влияние на их существование.
То же самое и с нами: по сравнению со многими другими космическими объектами, к примеру, галактиками, наш мир не просто крошечный – он незаметен. Отсюда напрашивается вывод: предположение, что наша реальность находится на субатомном уровне какой-либо иной вселенной, существующей на уровне атомов, вполне логично. Еще один аргумент данной теории звучит следующим образом: абсолютно все объекты в мире, будь то один из этих космических гигантов или еда, находящаяся в вашей тарелке, состоят из одного и того же «строительного материала».
Если верить, что вселенная – всего лишь атом другого мира, вполне возможно, что астрономы, биологи и физики, изучающие, казалось бы, разные сферы науки, занимаются на самом деле одним делом: один, наблюдая в телескоп скопления галактик, оставшиеся – задумываясь над строением живой клетки и атома. Кто знает, возможно, руководствуясь этим подходом, мы сможем лучше понять мир, в котором живем, и даже защититься от реальных космических угроз.
Источник
Видео: Что, если Вселенная — атом
Теория одноэлектронной Вселенной — это гипотеза Ричарда Фейнмана, известного физика-теоретика, который посвятил свою жизнь исследованию и созданию квантовой электродинамики. В основе названной теории лежит предположение, что наша Вселенная не состоит из огромного количества атомов и субатомных частиц, как все вокруг, а сама является одним-единственным атомом. Эта теория Фейнмана звучит нарочито фантастически, но парадокс в том, что ее невозможно доказать, равно как и опровергнуть. Автор ролика внизу рассказывает об этом подробнее.
Вселенная — это огромное пространство, где находится масса галактик, звездных систем, планет и спутников. Все они разные и все сосуществуют вместе. Благодаря мощным современным телескопам и спутникам мы можем примерно предполагать, где находится край видимой Вселенной, но насколько она велика за пределами наших возможностей? Считается, что все в этом мире состоит из атомов, а они в свою очередь состоят из более мелких субатомных частиц, таких как нейтроны, протоны, кварки и так далее.
Но состоят ли из чего-то те же самые частицы или являются самодостаточными? Что, если частицы состоят из более мелких фрагментов и так до бесконечности? Этого пока ученые не знают. Однако на основе этой любопытной мысли Фейнман спрогнозировал теорию, что наша Вселенная — всего лишь один атом, который состоит из множества других частиц. Тогда каково наше место в этом мире?
Эта гипотеза мирового физика не нашла большой поддержки и единомышленников: не все же могут мыслить так же нестандартно. Однако никто не знает истины, а потому оспаривать теорию никто не может. С другой стороны, эта фантастическая мысль дает бурное поле для других теорий! К примеру, если наша Вселенная — один лишь атом, то сколько таких атомов-вселенных может быть еще? Что они образуют и каково их назначение? А что вы думаете об этом ролике и предположении ученого?
Кстати, а вам интересно посмотреть на всю историю Вселенной за 5 минут?
Источник
Журнал «Все о Космосе»
Как образовались первые химические элементы, в каких уголках Вселенной это произошло. И откуда появились атомы, из которых мы состоим?
Ядра атомов химических элементов состоят из протонов и нейтронов. Самый легкий элемент — водород с ядром всего из одного протона, а во Вселенной есть больше сотни других элементов, и их ядра состоят из большего числа протонов и нейтронов. Нуклеосинтез — это образование ядер элементов, более тяжелых, чем водород. Как это происходило в самом начале Вселенной и где это происходит сейчас?
Как образовались атомные ядра?
Атомное ядро состоит из заряженных протонов (p+) и нейтронов (n0). Самое простое ядро — водород — это один протон (p+). Ядро гелия, или альфа-частица, включает два протона и два нейтрона (2p+ + 2n0). Ядро углерода, из которого состоим мы (12С), содержит по шесть протонов и нейтронов (6p+ + 6n0). Но есть и другие изотопы углерода, например 14С — в нем шесть протонов и восемь нейтронов (6p+ + 8n0).
Химические свойства элемента определяются его зарядом, числом протонов. Если один из нейтронов в ядре разваливается на протон и электрон (этот процесс называется бета-распадом), происходит трансмутация, и один элемент превращается в другой, хотя масса ядра не меняется.
В 1940-е годы многие ученые уже были убеждены, что Вселенная расширяется. Это означало, что когда-то, в первые минуты своего существования, она была гораздо меньше, чем сейчас, а вещество было очень плотным и горячим и состояло только из свободных протонов и нейтронов, то есть не содержало атомных ядер тяжелее водорода (p+). Но в нынешней Вселенной известно больше сотни элементов, включая и те, из которых сделаны мы. В какой-то момент должен был происходить нуклеосинтез — образование более тяжелых ядер из нейтронов и протонов.
Первая модель нуклеосинтеза была опубликована в 1948 году. Ее авторами были Георгий Гамов, задолго до этого эмигрировавший из СССР, и его аспирант Ральф Альфер. Их статья знаменита еще и тем, что Гамов ради шутки вписал в соавторы космолога Ханса Бете — получился список авторов, похожий на αβγ. Они предположили, что ядра всех элементов образуются путем нейтронного захвата. Протоны и нейтроны в молодой Вселенной объединялись между собой, присоединяли новые нейтроны и таким образом создали сразу всю таблицу Менделеева: теоретически из любого ядра можно получить следующее при помощи захвата одного или нескольких нейтронов и последующего бета-распада.
Довольно скоро стало понятно, что схема Альфера и Гамова не работает. Модели Большого взрыва позволяют легко рассчитать скорость реакций в зависимости от времени, температуры и плотности вещества. И оказалось, что первичный нуклеосинтез должен был закончиться очень быстро, в течение первых пятнадцати минут. Это происходит потому, что чем ниже плотность, тем меньше реакций. Чтобы произошла реакция, две частицы должны столкнуться между собой. Темп столкновений падает с уменьшением плотности и температуры, потому что температура — это скорость частиц. Кроме того, свободные нейтроны долго не живут. Если нейтрон не успел войти в состав ядра, он становится протоном. Практически все расчеты показывают, что первичный нуклеосинтез не мог зайти дальше лития-7 (3p+ + 4n0).
В 1957 году, всего через девять лет после теории αβγ, была опубликована фундаментальная работа Бербидж, Бербиджа, Фаулера и Хойла (который, кстати, не верил в теорию Большого взрыва). В ней была сформулирована уже практически современная теория нуклеосинтеза, несравненно более сложная. Сейчас, благодаря новым моделям и многочисленным наблюдениям, мы хорошо представляем себе, откуда во Вселенной взялись тяжелые химические элементы.
Как проходит нуклеосинтез?
Первичный нуклеосинтез закончился через несколько минут после образования Вселенной. К этому моменту 75% массы видимого вещества приходилось на водород и примерно 25% — на гелий. Еще во Вселенной было совсем крошечное — меньше сотой доли процента — количество дейтерия (2H), гелия-3 (3He) и лития (7Li). Практически все более тяжелые элементы образовались в результате ядерных реакций в звездах. И хотя из этих элементов построено все, что мы видим глазами, во вселенских масштабах их даже сейчас, через 13,8 миллиарда лет, не очень много — около 2% атомного вещества.
В звездах есть несколько путей синтеза новых ядер. Базовый путь называется протон-протонным циклом. Он может идти в условиях не очень высокой плотности и температуры и характерен для наименее массивных звезд вроде Солнца (именно благодаря этому процессу оно светит) или еще меньше. Цикл начинается со слияния двух протонов в дейтерий (p+ + n0) с образованием позитрона и нейтрино. Это самая медленная реакция цикла — «бутылочное горлышко», — которая лимитирует скорость синтеза в целом. После этого в результате цепочки реакций дейтерий превращается в устойчивое ядро гелия. Интересная особенность протон-протонного цикла состоит в том, что литий, бериллий и бор — те самые элементы, которые в небольших количествах образовались в результате первичного нуклеосинтеза, — являются его промежуточными продуктами и в звездах сгорают. Поэтому, хотя в целом во Вселенной легких элементов больше, чем тяжелых, именно эти три легких элемента очень редки.
Другой путь нуклеосинтеза требует большей температуры и давления, поэтому он идет в более массивных звездах, хотя бы в два раза массивнее Солнца. Он называется CNO-циклом, и суть его в том, что ядро гелия получается из четырех протонов при их последовательных захватах ядрами различных изотопов углерода, азота и кислорода. Для нас существенно, что для запуска CNO-цикла в среде уже должен присутствовать углерод.
Углерод образуется в звездах в результате тройного альфа-процесса. Сперва две альфа-частицы (ядра гелия) сливаются, образуя ядро бериллия-8, а затем присоединяют еще одну альфа-частицу и превращаются в углерод. Интересно, что ядро бериллия-8 очень неустойчиво. Поскольку первоначальное усложнение ядерного состава происходит путем добавления альфа-частиц, невозможность накопить много ядер бериллия-8 могла бы стать причиной того, что элементы тяжелее гелия просто не образовывались бы.
Но они образуются. Происходит это потому, что у ядер бериллия-8 и углерода-12 очень близкий ядерный резонанс, который позволяет тройному альфа-процессу осуществляться с довольно большой вероятностью. Этот резонанс, близкое совпадение двух чисел, не продиктован никакими физическими законами. Просто наша Вселенная так устроена, что они близки между собой.
Захват альфа-частиц, присоединение ядер гелия, позволяет возникнуть и элементам тяжелее углерода, в первую очередь кислороду, неону, магнию, кремнию, вплоть до никеля-56 (28p+ + 28n0), который далее распадается, образуя железо. Ядра тяжелее железа и никеля в термоядерных реакциях не образуются.
Важный источник тяжелых элементов — сверхновые типа Iа, которые предположительно связаны с термоядерными взрывами на белых карликах в двойных системах. Дело в том, что у белого карлика есть критическая масса — 1,4 массы Солнца. Карлик докритической массы удерживается от коллапса давлением вырожденного газа. Но если каким-то образом превысить эту массу, белый карлик теряет устойчивость, начинает сжиматься, разогреваться — получается очень большая термоядерная бомба. Происходит взрыв сверхновой, который сопровождается очень быстрым термоядерным синтезом. Основным его продуктом становится железо — финальная точка в термоядерном синтезе. Сверхновые этого типа считаются одним из главных источников железа в нашей Вселенной.
В термоядерных реакциях не образуются ядра тяжелее железа. Кроме того, в результате термоядерного синтеза не возникают нечетные элементы: в альфа-частице содержатся два протона, и она увеличивает атомный номер сразу на два. Откуда в таком случае берутся нечетные элементы?
Где происходит синтез тяжелых ядер?
Чтобы увеличить атомный номер на одну единицу, с ядром должно произойти то, что предполагали Альфер и Гамов: оно должно захватить один нейтрон и испустить электрон. Это происходит в два этапа. Сперва ядро захватывает нейтрон, масса увеличивается на единицу, но заряд не увеличивается — химически элемент остается прежним. Затем, если образовавшееся ядро неустойчиво, оно испытывает бета-распад, нейтрон превращается в протон, а заряд вырастает.
Так возникает следующий элемент, четный или нечетный. Элементы от никеля до висмута (209Bi) возникают в результате этого процесса — он называется s-процессом (от английского slow — «медленный»). Неторопливость его связана с тем, что в обычных условиях в теле звезды мало свободных нейтронов. Наряду с медленным существует и быстрый захват нейтронов — r-процесс (rapid). Он происходит в тех случаях, когда ядро успевает до бета-распада захватить несколько нейтронов, и дает возможность для синтеза еще более тяжелых элементов, вплоть до тория и урана (трансурановых элементов во Вселенной практически нет).
Чем больше заряд ядра, тем больше нейтронов требуется, чтобы компенсировать кулоновское отталкивание положительно заряженных протонов. Легкие ядра могут быть стабильными при равном количестве протонов и нейтронов, а тяжелые требуют уже существенно большего числа нейтронов. Например, более или менее устойчивый изотоп урана, уран-238, содержит 92 протона и целых 146 нейтронов. Чтобы синтезировать такие ядра, нейтронов должно быть много. До сих пор нет четко установившегося консенсуса, где это может происходить. Где происходит термоядерный синтез, хорошо известно — в звездах. S-процесс — в больших звездах. А вот где может идти r-процесс, мы наверняка не знаем, хотя возможных объяснений немного.
Первый вариант — это вспышки сверхновых. Когда в конце эволюции массивной звезды начинается сжатие железного ядра, происходит нейтронизация вещества: электроны вдавливаются в протоны, и образуется много нейтронов.
Второй вариант — слияние нейтронных звезд. Представьте, что две нейтронные звезды крутятся друг вокруг друга, излучают гравитационные волны и сближаются. При их слиянии мы снова получим шар, содержащий большое количество нейтронов. Расчеты показывают, что там возможно образование элементов r-процесса, то есть финала Периодической таблицы.
Еще недавно многие сказали бы, что слияние нейтронных звезд — это экзотика. Но в 2017 году впервые зафиксировали импульс всплеска гравитационных волн, совпавший с коротким гамма-всплеском. Мы и раньше предполагали, что короткие гамма-всплески сопровождают слияние нейтронных звезд, но теперь у нас появились убедительные наблюдательные данные. Поскольку по гравитационным волнам можно оценить массы слившихся объектов, мы уверены, что это были именно две нейтронные звезды. Гамма-всплесков наблюдается множество, и теперь, когда два нетривиальных наблюдательных результата совпали в одной точке пространства и времени, у нас появилось мощное указание на то, что слияния нейтронных звезд — это не гипотетический процесс. Они реально происходят и, значит, могут создавать условия для запуска r-процесса.
Где образуются литий, бериллий и бор?
Еще один источник нуклеосинтеза — космические лучи, поток атомных ядер, разогнанных до околосветовых скоростей. Энергии этих частиц огромны, до 1020 электронвольт, и даже больше. Когда ядра сталкиваются между собой на больших скоростях, происходят так называемые реакции скалывания: атомы просто разваливаются на мелкие кусочки. Самое важное последствие реакций скалывания с точки зрения глобального нуклеосинтеза — образование лития, бериллия и бора.
Кривая распространенности химических элементов во Вселенной выглядит так: сверху водород с гелием, а затем, далеко внизу, все остальные элементы. Четных элементов больше, чем нечетных, элементов железного пика некоторый избыток, но чем меньше атомный номер, тем больше таких атомов. Самая заметная аномалия этой кривой — глубокая яма на месте лития, бериллия и бора. Их существенно меньше, чем можно было бы ожидать, исходя из атомной массы.
Дело в том, что в первичном нуклеосинтезе они не образовывались. Разве что литий в мизерных количествах — порядка 10-10 относительно водорода. Бериллия и бора было еще меньше. В звездах эти элементы не образуются, а сгорают в протон-протонном цикле.
Долгое время астрофизики плохо представляли, откуда они берутся. Сейчас предполагается, что они продукт реакций в космических лучах, реакций скалывания. И это подтверждается наблюдениями. В целом состав ядер в космических лучах не отличается от обычной космической пропорции, за единственным исключением: лития, бериллия и бора в них существенно больше, чем где-либо еще. Литий в наших аккумуляторах, бор в борной кислоте, бериллий в изумрудах, — скорее всего, они возникли в межзвездном и околозвездном пространстве.
Из чего состояли древние звезды?
Самые первые звезды состояли, конечно, только из водорода и гелия. Но непонятно, как их можно было бы наблюдать. Теоретически мы видим объекты на больших красных смещениях, то есть можем узнать, какой была наша Вселенная в первые миллиарды лет своего существования. Но на таком расстоянии даже галактики различимы с большим трудом, не то что отдельные звезды. Есть надежда, что это удастся сделать при помощи телескопа Джеймса Уэбба, но пока таких инструментов нет.
Что нам понятно? Такие звезды из водорода и гелия существовали, и у нас есть веские основания полагать, что они были очень массивными, может быть, в тысячи раз более массивными, чем Солнце. В силу большой массы время их жизни было очень небольшим. Они давно взорвались, как сверхновые, и загрязнили Вселенную первыми тяжелыми элементами, и это загрязнение происходило очень эффективно.
У большинства даже самых старых звезд в нашей Галактике, в частности у звезд шаровых скоплений, содержание тяжелых элементов уступает солнечному всего в сто раз.
В нашей Галактике есть несколько звезд с более низким содержанием тяжелых элементов, но это уникальные экземпляры. Рекордные звезды содержат в сто тысяч раз меньше тяжелых элементов, но это две-три звезды на нашу довольно большую галактическую окрестность.
Звезд, состоящих из водорода и гелия, в Млечном Пути нет: они не дожили до нашей эпохи. Благодаря им впоследствии могли появиться и небольшие звезды вроде нашего Солнца, и Земля, и все атомы, из которых мы состоим.
Что еще неизвестно о нуклеосинтезе?
По большому счету, теория нуклеосинтеза уже сложилась. Во всей картине остался один большой вопрос, а именно локализация r-процесса. Ключевое открытие — открытие гравитационных волн — уже сделано, но дьявол кроется в деталях. Теория хорошо описывает внешний облик очень большого числа звезд, но не всех. Существуют звезды с довольно неожиданным поверхностным составом, например звезда Пшибыльского. Сообщалось о наблюдениях в ее спектре очень тяжелых элементов, включая трансурановый америций, который больше нигде не видели. Есть большая группа так называемых химически пекулярных звезд, обладающих повышенным поверхностным содержанием элементов типа бария, ртути, марганца, редких земель. Их существование указывает, что нам недостаточно понять образование элементов — важно разобраться, как они перераспределяются внутри звезд.
Если у какой-то звезды аномальный состав поверхности, это можно объяснить тем, что на нее что-то упало. Например, есть звезды с повышенным содержанием лития. Это странно: литий должен сгорать в термоядерных реакциях. Как это объяснить? На звезду могла упасть планета! Мы знаем, что существуют горячие юпитеры — планеты, вплотную приблизившиеся к своим звездам. Такая планета может оказаться слишком близко, упасть и обогатить атмосферу звезды литием, который не сгорел, потому что в атмосфере не идут термоядерные реакции. Вопросы еще есть, но на них, скорее всего, можно ответить без привлечения нуклеосинтеза.
Дмитрий Вибе.Доктор физико-математических наук, заведующий отделом физики и эволюции звезд Института астрономии РАН
Дорогие друзья! Желаете всегда быть в курсе последних событий во Вселенной? Подпишитесь на рассылку оповещений о новых статьях, нажав на кнопку с колокольчиком в правом нижнем углу экрана ➤ ➤ ➤
Источник