Непременной частью стандартной космологической теории служит концепция инфляции (см. врезку). После окончания инфляции в свои права вступило тяготение, и Вселенная продолжила расширяться, но уже с уменьшающейся скоростью. Такая эволюция растянулась на 9 млрд лет, после чего в дело вступило еще одно антигравитационное поле еще неизвестной природы, которое именуют темной энергией. Оно опять вывело Вселенную в режим экспоненциального расширения, который вроде бы должен сохраниться и в будущие времена. Следует отметить, что эти выводы базируются на астрофизических открытиях, сделанных в конце прошлого века, почти через 20 лет после появления инфляционной космологии.
Согласно инфляционной модели Вселенная вскоре после своего рождения очень короткое время экспоненциально расширялась, многократно удваивая свои линейные размеры. Ученые полагают, что начало этого процесса совпало по времени с отделением сильного взаимодействия и произошло на временной отметке в 10 -36 с. Такое расширение (с легкой руки американского физика-теоретика Сидни Коулмена его стали называть космологической инфляцией) было крайне непродолжительным [до 10 -34 с], однако увеличило линейные размеры Вселенной как минимум в 1010 30 —1010 50 раз, а возможно, что и много больше. В соответствии с большинством конкретных сценариев, инфляцию запустило антигравитационное квантовое скалярное поле, плотность энергии которого постепенно уменьшалась и в конце концов дошла до минимума. Перед тем как это случилось, поле стало быстро осциллировать, порождая элементарные частицы. В результате к окончанию инфляционной фазы Вселенная заполнилась сверхгорячей плазмой, состоящей из свободных кварков, глюонов, лептонов и высокоэнергетичных квантов электромагнитного излучения.
КОСМОЛОГИЧЕСКАЯ ИНФЛЯЦИЯ
Впервые инфляционная интерпретация Большого взрыва была предложена около 30 лет назад и с тех пор многократно шлифовалась. Эта теория позволила разрешить несколько фундаментальных проблем, с которыми не справилась предшествующая космология. Например, она объяснила, почему мы живем во Вселенной с плоской евклидовой геометрией — в соответствии с классическими уравнениями Фридмана, именно такой она и должна сделаться при экспоненциальном расширении. Инфляционная теория объяснила, почему космическая материя обладает зернистостью в масштабах, не превышающих сотен миллионов световых лет, а на больших дистанциях распределена равномерно. Она также дала истолкование неудачи любых попыток обнаружить магнитные монополи, очень массивные частицы с одиночным магнитным полюсом, которые, как считается в изобилии рождались перед началом инфляции (инфляция так растянула космическое пространство, что первоначально высокая плотность монополей сократилась почти до нуля, и поэтому наши приборы не могут их обнаружить). Вскоре после появления инфляционной модели несколько теоретиков поняли, что ее внутренняя логика не противоречит идее перманентного множественного рождения все новых и новых вселенных. В самом деле, квантовые флуктуации, подобные тем, которым мы обязаны существовованием нашего мира, могут возникать в любом количестве, если для этого имеются подходящие условия. Не исключено, что наше мироздание вышло из флуктуационной зоны, сформировавшейся в мире-предшественнике. Точно так же можно допустить, что когда-нибудь и где-нибудь в нашей собственной Вселенной образуется флуктуация, которая «выдует» юную вселенную совершенно другого рода, также способную к космологическому «деторождению». Существуют модели, в которых такие дочерние вселенные возникают непрерывно, отпочковываются от своих родительниц и находят свое собственное место. При этом вовсе не обязательно, что в таких мирах устанавливаются одни и те же физические законы. Все эти миры «вложены» в единый пространственно-временной континуум, но разнесены в нем настолько, что никак не ощущают присутствия друг друга. В общем, концепция инфляции позволяет — более того, вынуждает! — считать, что в исполинском мегакосмосе существует множество изолированных друг от друга вселенных с различным устройством.
Физики-теоретики любят придумывать альтернативы даже самым общепринятым теориям. Появились конкуренты и у инфляционной модели Большого взрыва. Они не получили широкой поддержки, но имели и имеют своих последователей. Теория Стейнхардта и Тьюрока среди них не первая и наверняка не последняя. Однако на сегодняшний день она разработана детальней остальных и лучше объясняет наблюдаемые свойства нашего мира. Она имеет несколько версий, из которых одни базируются на теории квантовых струн и многомерных пространств, а другие полагаются на традиционную квантовую теорию поля. Первый подход дает более наглядные картинки космологических процессов, так что на нем и остановимся. Самый продвинутый вариант теории струн известен как М-теория. Она утверждает, что физический мир имеет 11 измерений — десять пространственных и одно временное. В нем плавают пространства меньших размерностей, так называемые браны. Наша Вселенная — просто одна из таких бран, обладающая тремя пространственными измерениями. Ее заполняют различные квантовые частицы (электроны, кварки, фотоны и т.д.), которые на самом деле явлются разомкнутыми вибрирующими струнами с единственным пространственным измерением — длиной. Концы каждой струны намертво закреплены внутри трехмерной браны, и покинуть брану струна не может. Но есть и замкнутые струны, которые могут мигрировать за пределы бран — это гравитоны, кванты поля тяготения.
Инфляционная теория допускает образование множественных дочерних вселенных, которые непрерывно отпочковываются от существующих
МНОЖЕСТВЕННЫЕ ВСЕЛЕННЫЕ
Как же циклическая теория объясняет прошлое и будущее мироздания? Начнем с нынешней эпохи. Первое место сейчас принадлежит темной энергии, которая заставляет нашу Вселенную расширяться по экспоненте, периодически удваивая размеры. В результате плотность материи и излучения постоянно падает, гравитационное искривление пространства слабеет, а его геометрия становится все более плоской. В течение следующего триллиона лет размеры Вселенной удвоятся около ста раз и она превратится в практически пустой мир, полностью лишенный материальных структур. Рядом с нами находится еще одна трехмерная брана, отделенная от нас на ничтожное расстояние в четвертом измерении, и она тоже претерпевает аналогичное экспоненциальное растяжение и уплощение. Все это время дистанция между бранами практически не меняется. А потом эти параллельные браны начинают сближаться. Их толкает друг к другу силовое поле, энергия которого зависит от расстояния между бранами. Сейчас плотность энергии такого поля положительна, поэтому пространство обеих бран расширяется по экспоненте, — следовательно, именно это поле и обеспечивает эффект, который объясняют наличием темной энергии! Однако этот параметр постепенно уменьшается и через триллион лет упадет до нуля. Обе браны все равно продолжат расширяться, но уже не по экспоненте, а в очень медленном темпе. Следовательно, в нашем мире плотность частиц и излучения так и останется почти что нулевой, а геометрия — плоской.
Но окончание старой истории — лишь прелюдия к очередному циклу. Браны перемещаются навстречу друг другу и в конце концов сталкиваются. На этой стадии плотность энергии межбранового поля опускается ниже нуля, и оно начинает действовать наподобие гравитации (напомню, что у тяготения потенциальная энергия отрицательна!). Когда браны оказываются совсем близко, межбрановое поле начинает усиливать квантовые флуктуации в каждой точке нашего мира и преобразует их в макроскопические деформации пространственной геометрии (например, за миллионную долю секунды до столкновения расчетный размер таких деформаций достигает нескольких метров). После столкновения именно в этих зонах выделяется львиная доля высвобождаемой при ударе кинетической энергии. В итоге именно там возникает больше всего горячей плазмы с температурой порядка 10 23 градусов. Именно эти области становятся локальными узлами тяготения и превращаются в зародыши будущих галактик. Такое столкновение заменяет Большой взрыв инфляционной космологии. Очень важно, что вся возникшая заново материя с положительной энергией появляется за счет накопленной отрицательной энергии межбранового поля, поэтому закон сохранения энергии не нарушается. А как ведет себя такое поле в этот решающий момент? До столкновения плотность его энергии достигает минимума (причем отрицательного), затем начинает возрастать, а при столкновении становится нулевой. Затем браны отталкиваются друг от друга и начинают расходиться. Плотность межбрановой энергии проходит обратную эволюцию — опять делается отрицательной, нулевой, положительной. Обогащенная материей и излучением брана сначала расширяется с падающей скоростью под тормозящим воздействием собственного тяготения, а потом вновь переходит к экспоненциальному расширению. Новый цикл заканчивается подобно прежнему — и так до бесконечности. Циклы, предшествующие нашему, происходили и в прошлом — в этой модели время непрерывно, поэтому прошлое существует и за пределами 13,7 млрд лет, прошедших после последнего обогащения нашей браны материей и излучением! Было ли у них вообще какое-то начало, теория умалчивает. Циклическая теория по-новому объясняет свойства нашего мира. Он обладает плоской геометрией, поскольку к концу каждого цикла непомерно растягивается и лишь немного деформируется перед началом нового цикла. Квантовые флуктуации, которые становятся предшественниками галактик, возникают хаотически, но в среднем равномерно — поэтому космическое пространство заполнено сгустками материи, но на очень больших дистанциях вполне однородно. Мы не можем обнаружить магнитные монополи просто потому, что максимальная температура новорожденной плазмы не превышала 10 23 К, а для возникновения таких частиц потребны много большие энергии — порядка 10 27 К.
Циклическая теория существует в нескольких версиях, как и теория инфляции. Однако, по словам Пола Стейнхардта, различия между ними чисто технические и интересны лишь специалистам, общая концепция же остается неизменной: «Во-первых, в нашей теории нет никакого момента начала мира, никакой сингулярности.
Момент Большого взрыва — это столкновение бран. Выделяется огромное количество энергии, браны разлетаются, происходит замедляющееся расширение, вещество и излучение остывают, образуются галактики. Расширение вновь ускоряется за счет положительной плотности межбрановой энергии, а затем замедляется, геометрия становится плоской. Браны притягиваются друг к другу, перед столкновением квантовые флуктуации усиливаются и преобразуются в деформации пространственной геометрии, которые в будущем станут зародышами галактик. Происходит столкновение, и цикл начинается сначала.
ЦИКЛИЧЕСКОЕ МИРОЗДАНИЕ
Есть периодические фазы интенсивного рождения вещества и излучения, каждую из которых при желании можно называть Большим взрывом. Но любая из этих фаз знаменует не возникновение новой вселенной, а лишь переход от одного цикла к другому. И пространство, и время существуют и до, и после любого из этих катаклизмов. Поэтому вполне закономерно спросить, каким было положение дел за 10 млрд лет до последнего Большого взрыва, от которого отсчитывают историю мироздания. Второе ключевое отличие — природа и роль темной энергии. Инфляционная космология не предсказывала перехода замедляющегося расширения Вселенной в ускоренное. А когда астрофизики открыли это явление, наблюдая за вспышками далеких сверхновых звезд, стандартная космология даже не знала, что с этим делать. Гипотезу темной энергии выдвинули просто для того, чтобы как-то привязать к теории парадоксальные результаты этих наблюдений. А наш подход гораздо лучше скреплен внутренней логикой, поскольку темная энергия у нас присутствует изначально и именно она обеспечивает чередование космологических циклов». Впрочем, как отмечает Пол Стейнхардт, есть у циклической теории и слабые места: «Нам пока не удалось убедительно описать процесс столкновения и отскока параллельных бран, имеющий место в начале каждого цикла. Прочие аспекты циклической теории разработаны куда лучше, а здесь предстоит устранить еще немало неясностей».
Но даже самые красивые теоретические модели нуждаются в опытной проверке. Можно ли подтвердить или опровергнуть циклическую космологию с помощью наблюдений? «Обе теории, и инфляционная, и циклическая, предсказывают существование реликтовых гравитационных волн, — объясняет Пол Стейнхардт. — В первом случае они возникают из первичных квантовых флуктуаций, которые в ходе инфляции размазываются по пространству и порождают периодические колебания его геометрии, — а это, согласно общей теории относительности, и есть волны тяготения. В нашем сценарии первопричиной таких волн также служат квантовые флуктуации — те самые, что усиливаются при столкновении бран. Вычисления показали, что каждый механизм порождает волны, обладающие специфическим спектром и специфической поляризацией. Эти волны обязаны были оставить отпечатки на космическом микроволновом излучении, которое служит бесценным источником сведений о раннем космосе. Пока такие следы обнаружить не удалось, но, скорее всего, это будет сделано в течение ближайшего десятилетия. Кроме того, физики уже думают о прямой регистрации реликтовых гравитационных волн с помощью аппаратов, которые появятся через два-три десятка лет».
Источник
Вселенная
Вселенная оказалась меньше, чем ранее считалось
Данные, полученные космическим аппаратом НАСА, озадачили астрономов и с новой остротой поставили вопрос о возможной ограниченности Вселенной. Имеются свидетельства того, что она, кроме того, неожиданно мала (по астрономическим, естественно, масштабам), и только вследствие своеобразного «оптического обмана зрения» нам кажется, что нет ей конца и края.
Сумятицу в научном сообществе вызвали данные, полученные американским зондом WMAP (Wilkinson Microwave Anisotropy Probe) , работающим с 2001 года. Его аппаратура измеряла флуктуации температуры реликтового микроволново́го излучения. Астрономов, в частности, интересовало распределение величин («размеров») пульсаций, поскольку оно может пролить свет на процессы, происходившее во Вселенной на начальных стадиях ее развития. Так, если бы Вселенная была бесконечной, диапазон этих пульсаций был бы неограниченным. Анализ полученных WMAP данных о мелкомасштабных флуктуа́циях реликтового излучения подтверждал гипотезу о бесконечной вселенной. Однако выяснилось, что в больших масштабах флуктуации практически исчезают.
Компьютерное моделирование подтвердило, что подобный характер распределения флуктуаций возникает только в том случае, если размеры Вселенной невелики, и в них просто не могут возникнуть более протяженные области флуктуаций. По мнению учёных, полученные результаты свидетельствуют не только о неожиданно малых размерах Вселенной, но и о том, что пространство в ней «замкнуто само на себя». Несмотря на свою ограниченность, края как такового Вселенная не имеет – луч света, распространяясь в пространстве, должен через определенный (большой) промежуток времени возвратиться в исходную точку. Из-за этого эффекта, например, астрономы Земли могут наблюдать одну и ту же галактику в разных частях небосвода (да ещё с разных сторон). Можно сказать, что Вселенная — это зеркальная комната, в которой каждый предмет, находящийся внутри, даёт множество своих зеркальных образов.
По данным моделирования, результаты наблюдений WMAP свидетельствуют о том, что Вселенная представляет собой набор бесконечно повторяющихся додека́эдров — пра́вильных многогранников, поверхность которых образована 12 пра́вильными пятиугольниками. Именно такую форму имеют знакомые всем футбольные мячи. При этом, по мнению астрономов, сходство между «додека́эдровой» моделью Вселенной и данными WMAP просто потрясающее, и они «соответствовали друг другу гораздо лучше, чем можно было вообразить».
Если результаты будут подтверждены, наши взгляды на Вселенную будут нуждаться в серьезной коррекции. Во-первых, она окажется относительно небольшой – около 70 млрд. световых лет в поперечнике. Во-вторых, становится возможным наблюдать всю Вселенную целиком и убедиться в том, что в ней везде действуют одни и те же физические законы.
Материал подготовлен на основе информации журнала «New Scientist»
Новейшая теория циклического развития Вселенной
«Выдвинутая недавно новейшая теория циклического развития Вселенной, совсем не сбрасывая со счето́в идею профессора В. Фридмана об имевшем место 13,7 миллиарда лет назад Большом взрыве, по-новому рассматривает пространство и время», – заявил недавно на международном симпозиуме астрофизиков в Сиэтле руководитель Га́рвард-Сми́тсоновского Астрофизического центра Джеральдин Бинвот.
Как пишет журнал «The Globe» (Великобритания), согласно теории доктора Пола Стейнхардта из При́нстонского университета (США) и доктора Нила Тюроука из Кембриджа (Великобритания), пространство и время возникли не в момент Большого взрыва, что до недавнего времени считалось незыблемой истиной в кругах ортодоксальных ученых-астрофизиков, а существовали всегда в бесконечном цикле расширения и перерождения Вселенной.
Периоды ускоренного расширения сменяются засто́йными временами, приводящими к Большому взрыву, и всё начинается сначала. Предложенная ранее модель Вселенной с точкой отсчета в Большом взрыве развивалась в соответствии с накоплением астрофизических данных, в частности уникальных сведений о том, что далёкие космические объекты расходятся с постоянно возрастающей скоростью. Недостающие звенья в гармоничной картине теоретики дополнили составляющей под термином «тёмная энергия».
Новая модель заменила расширение Вселенной и тёмную энергию на единое энергетическое поле. Энергетическое поле непостоянно, колебания такого поля приводят то к расширению, то к стагнации, то есть к периоду замирания, вселенскому застою.
Циклическая теория Стейнхардта-Тюроука является сочетанием стандартных представлений и идей, которые являются продвинутыми попытками создания теории, объединяющей с помощью математики все физические силы и частицы.
Примечание: Читайте дополнительно тему « Циклические модели Вселенной » на Знания-сила.
Теория «струн»
Есть и теория «струн», по которой Вселенная существует в виде двух параллельных пластов (физики называют их бранами). Эти условные пласты разделяет микроскопическое расстояние, которое является дополнительным – пока совершенно непостижимым нашему восприятию – пятым измерением. И в настоящий момент истории существования Вселенной браны расширяются во всех направлениях, постепенно распространяя накопленные материю и энергию.
Триллионы лет протеку́т, пока браны фактически опустоша́тся. Тогда наступит застой, пласты Вселенной начнут сближаться, а пятое измерение просто сплющится. И тогда придет час очередного Большого взрыва! Причем браны — это не параллельные Вселенные, а, скорее, отсеки единой Вселенной, и одна из бран содержит известные нам виды энергии и формы материи, а другая, – неведомые, например, гипотетическую тёмную энергию, тёмную материю, объясняет Пол Стейнхардт. И единственную возможность взаимодействия предоставляет этим двум пластам гравитация. «Теория циклической Вселенной Стейнхардта-Тюроука уже признана первой за последние два десятка лет заслуживающей внимания космологической идеей, хотя её основные положения ортодоксы науки называют не имеющими фактологической базы», — комментирует «The Globe» .
Большого взрыва, впрочем, тоже никто не видел, хотя есть экспериментальные данные, будто бы указывающие на вещество, образовавшееся сразу после него, – на коротко живущую кварк-плазму.
Материал подготовлен на основе информации альманаха «The Globe».