Меню

Теория возникновения вселенной теория струн

Как образовалась Вселенная

Что же такое Вселенная? Если емко, то это сумма всего существующего. Это все время, пространство, материя и энергия, образовавшиеся и расширяющиеся вот уже 13.8 миллиардов лет. Никто не может точно сказать, насколько обширны просторы нашего мира и пока нет точных предсказаний финала.

Определение Вселенной

Само слово «Вселенная» происходит от латинского «universum». Впервые его использовал Цицерон, а уже после него оно стало общепринятым у римских авторов. Понятие обозначало мир и космос. На тот момент люди в этих словах видели Землю, все известные живые существа, Луну, Солнце, планеты (Меркурий, Венера, Марс, Юпитер и Сатурн) и звезды.

Иногда вместо «Вселенная» используют «космос», которое с греческого переводится как «мир». Кроме того, среди терминов фигурировали «природа» и «все».

В современном понятии вмещают все, что существует во Вселенной – наша система, Млечный Путь и прочие структуры. Также сюда входят все виды энергии, пространство-время и физические законы.

Одним из основных вопросов, которые не выходят из сознания человека, всегда был и является вопрос: «как появилась Вселенная?». Конечно же, однозначного ответа на данный вопрос нет, и вряд ли будет получен в скором времени, однако наука работает в этом направлении и формирует некую теоретическую модель зарождения нашей Вселенной.

Теории происхождения Вселенной

Креационизм: все создал Господь Бог

Среди всех теорий о происхождении Вселенной эта появилась самой первой. Очень хорошая и удобная версия, которая, пожалуй, будет иметь актуальность всегда. Кстати, многие ученые физики, несмотря на то что наука и религия часто представляются понятиями противоположными, верили в Бога.

Например, Альберт Эйнштейн говорил:

«Каждый серьезный естествоиспытатель должен быть каким-то образом человеком религиозным. Иначе он не способен себе представить, что те невероятно тонкие взаимозависимости, которые он наблюдает, выдуманы не им.»

Теория Большого Взрыва (модель горячей Вселенной)

Пожалуй, самая распространенная и наиболее признанная модель происхождения нашей Вселенной. Отвечает на вопрос — каким образом образовались химические элементы и почему распространённость их именно такая, какая сейчас наблюдается.

Согласно этой теории, около 14 миллиардов назад, пространства и времени не было, а вся масса вселенной была сосредоточена в крохотной точке с невероятной плотностью – в сингулярности. Однажды из-за возникшей в ней неоднородности, произошел так называемый Большой Взрыв. И с тех пор Вселенная постоянно расширяется и остывает.

Теория Большого взрыв

Первые 10 -43 секунды после Большого Взрыва называют этапом квантового хаоса. Природа мироздания на этом этапе существования не поддается описанию в рамках известной нам физики. Происходит распад непрерывного единого пространства-времени на кванты.

Спустя 10 000 лет энергия вещества постепенно превосходит энергию излучения и происходит их разделения. Вещество начинает доминировать над излучением, возникает реликтовый фон.

Теория Большого Взрыва тверже встала на ноги после открытия космологического красного смещения и реликтового излучения. Два этих явления — самые весомые доводы в пользу правильности теории.

Также разделение вещества с излучением значительно усилило изначальные неоднородности в распределении вещества, в результате чего начали образовываться галактики и сверхгалактики. Законны Вселенной пришли к тому виду, в котором мы наблюдаем их сегодня.

Модель расширяющейся Вселенной

Сейчас доподлинно известно, что Галактики и иные космические объекты удаляются друг от друга, а значит, Вселенная расширяется.

Модель расширяющейся Вселенной описывает сам факт расширения. В общем случае не рассматривается, когда и почему Вселенная начала расширяться. В основе большинства моделей лежит общая теория относительности и её геометрический взгляд на природу гравитации.

Красное смещение – это наблюдаемое для далеких источников понижение частот излучения, которое объясняется отдалением источников (галактик, квазаров) друг от друга. Данный факт свидетельствует о том, что Вселенная расширяется.

Реликтовое излучение – это как бы отголоски большого взрыва. Ранее Вселенная представляла собой горячую плазму, которая постепенно остывала. Еще с тех далеких времен во Вселенной остались так называемые блуждающие фотоны, которые образуют фоновое космическое излучение. Ранее при более высоких температурах Вселенной данное излучение было гораздо мощнее. Сейчас же его спектр соответствует спектру излучения абсолютно твердого тела с температурой всего 2,7 Кельвин.

Теория эволюции крупномасштабных структур

Как показывают данные по реликтовому фону, в момент отделения излучения от вещества Вселенная была фактически однородна, флуктуации вещества были крайне малыми, и это представляет собой значительную проблему.

Вторая проблема — ячеистая структура сверхскоплений галактик и одновременно сфероподобная — у скоплений меньших размеров. Любая теория, пытающаяся объяснить происхождение крупномасштабной структуры Вселенной, в обязательном порядке должна решить эти две проблемы.

Современная теория формирования крупномасштабной структуры, как впрочем и отдельных галактик, носит названия «иерархическая теория».

Суть — вначале галактики были небольшие по размеру (примерно как Магеллановы облака ), но со временем они сливаются, образуя всё большие галактики.

В последнее время верность теории поставлена под вопрос.

Теория струн

Эта гипотеза в некоторой степени опровергает Большой взрыв в качестве начального момента возникновения элементов открытого космоса.

Согласно теории струн, Вселенная существовала всегда. Гипотеза описывает взаимодействие и структуру материи, где существует определенный набор частиц, которые делятся на кварки, бозоны и лептоны. Говоря простым языком, эти элементы являются основой мироздания, поскольку их размер настолько мал, что деление на другие составляющие стало невозможным.

Отличительной чертой теории о том, как образовалась Вселенная, становится утверждение о вышеупомянутых частицах, которые представляют собой ультрамикроскопические струны, которые постоянно колеблются. Поодиночке они не имеют материальной формы, являясь энергией, которая в совокупности создает все физические элементы космоса.

Примером в данной ситуации послужит огонь: глядя на него, он кажется материей, однако он неосязаем.

Хаотическая теория инфляции — теория Андрея Линде

Согласно данной теории существует некоторое скалярное поле, которое неоднородно во всем своем объеме. То есть в различных областях вселенной скалярное поле имеет разное значение. Тогда в областях, где поле слабое – ничего не происходит, в то время как области с сильных полем начинают расширяться (инфляция) за счет его энергии, образуя при этом новые вселенные.

Такой сценарий подразумевает существование множества миров, возникших неодновременно и имеющих свой набор элементарных частиц, а, следовательно, и законов природы.

Теория Ли Смолина

Эта теория достаточно известна и предполагает, что Большой Взрыв не является началом существования Вселенной, а – лишь фазовым переходом между двумя ее состояниями. Так как до Большого Взрыва Вселенная существовала в форме космологической сингулярности, близкой по своей природе к сингулярности черной дыры, Смолин предполагает, что Вселенная могла возникнуть из черной дыры.

Эволюция Вселенной

Как происходил процесс развития и эволюции Вселенной? В течение следующих миллиардов лет гравитация заставила более плотные области притягиваться. В этом процессе формировались газовые облака, звезды, галактические структуры и прочие небесные объекты.

Этот период именуют Структурной Эпохой, так как именно в этот временной отрезок зарождалась современная Вселенная. Видимое вещество распределялось на различные формирования (звезды в галактики, а те в скопления и сверхскопления).

Что было до появления Вселенной

Сложно представить время за 13,7 миллиардов лет до сегодняшнего дня, когда вся Вселенная представляла собой сингулярность. Согласно теории Большого взрыва, один из главных претендентов на роль объяснения того, откуда появилась Вселенная и вся материя в космосе — все было сжато в точку, меньшую, чем субатомная частица. Но если это еще можно принять, задумайтесь вот о чем: что же было до того, как случился Большой взрыв?

Этот вопрос современной космологии уходит корнями еще в четвертое столетие нашей эры. 1600 лет назад теолог Августин Блаженный как и один из лучших физиков 20 века Альберт Эйнштейн пытались понять природу до сотворения Вселенной. Они пришли к выводу , что просто не было никакого «до».

Читайте также:  Тайны или секрет вселенной

В настоящее время человеком выдвигаются различные теории.

Теория Мультивселенной

Что если наша Вселенная является потомком другой, старшей Вселенной? Некоторые астрофизики полагают, что пролить свет на эту историю поможет реликтовое излучение, оставшееся от большого взрыва.

Согласно этой теории, в первые мгновения своего существования Вселенная начала чрезвычайно быстро расширяться. Также теория объясняет температуру и плотность флуктуаций реликтового излучения и подсказывает, что эти флуктуации должны быть одинаковыми.

Но, как выяснилось, нет. Последние исследования дали понять, что Вселенная на самом деле однобока, и в некоторых областях флуктуаций больше, чем в других. Некоторые космологи считают, что это наблюдение подтверждает, что у нашей Вселенной была «мать»(!)

В теории хаотической инфляции эта идея приобретает размах: бесконечный прогресс инфляционных пузырьков порождает обилие вселенных, и каждая из них порождает еще больше инфляционных пузырьков в огромном количестве Мультивселенных.

Теория белых и черных дыр

Тем не менее, существуют модели, которыми пытаются объяснить образование сингулярности до большого взрыва. Если вы думаете о черных дырах как о гигантских мусоросборниках, они являются главными кандидатами первоначального сжатия, поэтому наша расширяющаяся Вселенная вполне может быть белой дырой — выходным отверстием черной дыры, и каждая черная дыра в нашей Вселенной может вмещать в себя отдельную вселенную.

Большой скачок

Другие ученые считают, что в основе формирования сингулярности лежит цикл под названием «большой скачок», в результате которого расширяющаяся вселенная в итоге коллапсирует сама в себя, порождая другую сингулярность, которая, опять же, порождает другой большой взрыв.

Этот процесс будет вечным, и все сингулярности и все схлопывания не будут представлять собой ничего другого, кроме как переход в другую фазу существования Вселенной.

Теория циклической Вселенной

Последнее объяснение, которое мы рассмотрим, использует идею циклической Вселенной, порожденной теорией струн. Она предполагает, что новая материя и потоки энергии появляются каждые триллионы лет, когда две мембраны или браны, лежащие за пределами наших измерений, сталкиваются между собой.

Что было до Большого взрыва? Вопрос остается открытым. Может быть, ничего. Может, другая Вселенная или другая версия нашей. Может, океан Вселенных, в каждой из которых — свой набор законов и констант, диктующих природу физической реальности.

Проблемы современных моделей рождения и эволюции Вселенной

Многие теории, касающиеся Вселенной в последнее время сталкиваются с проблемами, как теоретического, так и, что более важно, наблюдательного характера:

  1. Вопрос о форме Вселенной является важным открытым вопросом космологии. Говоря математическим языком, перед нами стоит проблема поиска трёхмерного пространственного сечения Вселенной, то есть такой фигуры, которая наилучшим образом представляет пространственный аспект Вселенной.
  2. Неизвестно, является ли Вселенная глобально пространственно плоской, то есть применимы ли законы Евклидовой геометрии на самых больших масштабах.
  3. Также неизвестно, является ли Вселенная односвязной или многосвязной. Согласно стандартной модели расширения, Вселенная не имеет пространственных границ, но может быть пространственно конечна.
  4. Существуют предположения, что Вселенная изначально родилась вращающейся. Классическим представлением о зарождении является идея об изотропности Большого взрыва, то есть о распространении энергии одинаково во все стороны. Однако появилась и получила некоторое подтверждение конкурирующая гипотеза о наличии изначального момента вращения Вселенной.

Видео

Источник

Что нужно знать о теории струн

чтобы произвести впечатление на друзей

В школе мы учили, что материя состоит из атомов, а атомы — из ядер, вокруг которых вращаются электроны. Примерно так же планеты вращаются вокруг солнца, поэтому это нам представить легко. Затем атом расщепили на элементарные частицы, и представить строение вселенной стало сложнее. В масштабе частиц действуют другие законы, и найти аналогию из жизни получается не всегда. Физика стала абстрактной и запутанной.

Но следующий шаг теоретической физики вернул ощущение реальности. Теория струн описала мир в понятиях, которые снова можно представить, а значит, легче понять и запомнить.

Тема все равно непростая, поэтому пойдем по порядку. Сначала разберем, в чем заключается теория, потом попробуем понять, зачем ее придумали. А на десерт — немного истории, у теории струн она короткая, но с двумя революциями.

Вселенная состоит из вибрирующих нитей энергии

До теории струн элементарные частицы считали точками — безразмерными формами с определенными свойствами. Теория струн описывает их как нити энергии, у которых один размер все же есть — длина. Эти одномерные нити назвали квантовыми струнами.

Теоретическая физика
описывает мир с помощью математики, в отличие от экспериментальной физики. Первым физиком-теоретиком был Исаак Ньютон (1642-1727)

Теоретическая физика
описывает мир с помощью математики, в отличие от экспериментальной физики. Первым физиком-теоретиком был Исаак Ньютон (1642-1727)

Ядро атома с электронами, элементарные частицы и квантовые струны глазами художника. Фрагмент документального фильма «Элегантная вселенная»

Квантовые струны очень малы, их длина порядка 10 –33 см. Это в сто миллионов миллиардов раз меньше протонов, которых сталкивают на Большом адронном коллайдере. Для подобных экспериментов со струнами пришлось бы построить ускоритель размером с галактику. Пока не нашли способ обнаружить струны, но благодаря математике мы можем предположить некоторые их свойства.

Квантовые струны бывают открытыми и закрытыми. У открытых концы свободные, у закрытых замыкаются друг на друга, образуя петли. Струны постоянно «открываются» и «закрываются», соединяются с другими струнами и распадаются на более мелкие.

Квантовые струны натянуты. Натяжение в пространстве происходит благодаря разнице энергии: у закрытых струн между сомкнутыми концами, у открытых — между концами струн и пустотой. Эту пустоту физики называют двумерными гранями измерений, или бранами — от слова мембрана.

сантиметров — минимально возможный размер объекта во вселенной. Его называют планковской длиной

сантиметров — минимально возможный размер объекта во вселенной. Его называют планковской длиной

Мы состоим из квантовых струн

Квантовые струны вибрируют. Это колебания, похожие на колебания струн балалайки, с равномерными волнами и целым числом минимумов и максимумов. При вибрации квантовая струна не издает звука, в масштабах элементарных частиц нечему передавать звуковые колебания. Она сама становится частицей: вибрирует с одной частотой — кварк, с другой — глюон, с третьей — фотон. Поэтому квантовая струна — это единый строительный элемент, «кирпичик» вселенной.

Вселенную принято изображать как космос и звезды, но это и наша планета, и мы с вами, и текст на экране, и ягоды в лесу.

Схема струнных колебаний. При любой частоте все волны одинаковые, их количество целое: одна, две и три

Подмосковье, 2016 год. Земляники много — больше только комаров. Они тоже из струн.

А космос — он где-то там. Вернемся к космосу

Итак, в основе вселенной — квантовые струны, одномерные нити энергии, которые вибрируют, меняют размер и форму и обмениваются энергией с другими струнами. Но это не все.

Квантовые струны перемещаются в пространстве. И пространство в масштабах струн — это самая любопытная часть теории.

Квантовые струны перемещаются в 11 измерениях

Все началось с Альберта Эйнштейна. Его открытия показали, что время относительно, и объединили его с пространством в единый простанственно-временной континуум. Работы Эйнштейна объяснили гравитацию, движение планет и возникновение черных дыр. Кроме того, они вдохновили современников на новые открытия.

Уравнения Общей теории относительности Эйнштейн опуликовал в 1915-16 годах, а уже в 1919-м польский математик Теодор Калуца попытался применить его расчеты к теории электромагнитного поля. Но возник вопрос: если эйнштейновская гравитация искривляет четыре измерения пространства-времени, что искривляют электромагнитные силы? Вера в Эйнштейна была сильна, и Калуца не усомнился в том, что его уравнения опишут электромагнетизм. Вместо этого он предположил, что электромагнитные силы искривляют дополнительное, пятое измерение. Эйнштейну идея пришлась по душе, но проверки экспериментами теория не прошла и была забыта — до 1960-х.

Читайте также:  Эксперимент 2000 мышиный вселенная

Альберт Эйнштейн (1879-1955)

Первые уравнения теории струн давали странные результаты. В них появлялись тахионы — частицы с отрицательной массой, которые двигались быстрее скорости света. Здесь и пригодилась идея Калуцы о многомерности вселенной. Правда, пяти измерений не хватило, как не хватило шести, семи или десяти. Математика первой теории струн обретала смысл, только если в нашей вселенной 26 измерений! Более поздним теориям хватило десяти, а в современной их одиннадцать — десять пространственных и время.

Но если так, почему мы не видим дополнительные семь измерений? Ответ прост — они слишком малы. Издалека объемный предмет будет казаться плоским: водопроводная труба покажется лентой, а воздушный шарик — кругом. Даже если бы мы могли увидеть объекты в других измерениях, мы бы не рассмотрели их многомерность. Этот эффект ученые называют компактификацией.

Дополнительные измерения свернуты в неуловимо малые формы пространства-времени — их называют простанствами Калаби-Яу. Издалека выглядит плоским.

Семь дополнительных измерений мы можем представить только в виде математических моделей. Это фантазии, которые построены на известных нам свойствах пространства и времени. При добавлении третьего измерения мир становится объемным, и мы можем обойти препятствие. Возможно, по тому же принципу корректно добавить остальные семь измерений — и тогда по ним можно обогнуть пространство-время и попасть в любую точку любой вселенной в любой момент времени.

измерений во вселенной по первому варианту теории струн — бозонному. Сейчас его считают неактуальным

измерений во вселенной по первому варианту теории струн — бозонному. Сейчас его считают неактуальным

У линии только одно измерение — длина

Это двумерный человечек, у него есть длина и ширина

Воздушный шарик объемный, у него есть третье измерение — высота. Но для двумерного человечка он выглядит линией

Как двумерный человечек не может представить многомерность, так и мы не можем представить все измерения вселенной

По такой модели квантовые струны путешествуют всегда и везде, а значит, одни и те же струны кодируют свойства всех возможных вселенных от их рождения и до конца времен. К сожалению, наш воздушный шарик плоский. Наш мир — лишь четырехмерная проекция одиннадцатимерной вселенной на видимые масшабы пространства-времени, и мы не можем последовать за струнами.

Когда-нибудь мы увидим Большой Взрыв

Когда-нибудь мы рассчитаем частоту вибраций струн и организацию дополнительных измерений в нашей вселенной. Тогда мы узнаем о ней абсолютно все и сможем увидеть Большой Взрыв или слетать на Альфу Центавра. Но пока это невозможно — нет никаких намеков, на что опереться в расчетах, и найти нужные цифры можно только перебором. Математики подсчитали, что перебрать придется 10 500 вариантов. Теория зашла в тупик.

И все же теория струн еще способна объяснить природу вселенной. Для этого она должна связать все другие теории, стать теорией всего.

Теория струн станет теорией всего. Может быть

Во второй половине XX века физики подтвердили ряд фундаментальных теорий о природе вселенной. Казалось, еще немного — и мы все поймем. Однако главную проблему решить не удается до сих пор: теории прекрасно работают по отдельности, но общей картины не дают.

Главных теорий две: теория относительности и квантовая теория поля.

вариантов организации 11 измерений в пространствах Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой части вселенной — порядка 10 80

вариантов организации пространств Калаби-Яу — хватит для всех возможных вселенных. Для сравнения, количество атомов в наблюдаемой вселенной — порядка 10 80

Теория относительности
описала гравитационное взаимодействие между планетами и звездами и объяснила феномен черных дыр. Это физика наглядного и логичного мира.

Модель гравитационного взаимодействия Земли и Луны в эйнштейновском пространстве-времени

Квантовая теория поля
определила типы элементарных частиц и описала 3 вида взаимодействия между ними: сильное, слабое и электромагнитное. Это физика хаоса.

Квантовый мир глазами художника. Видео с сайта MiShorts

Квантовую теорию поля с добавлением массы для нейтрино называют Стандартной моделью. Это основная теория строения вселенной на квантовом уровне. Большинство предсказаний теории подтверждается в экспериментах.

Стандартная модель делит все частицы на фермионы и бозоны. Фермионы формируют материю — в эту группу входят все наблюдаемые частицы, такие как кварк и электрон. Бозоны — это силы, которые отвечают за взаимодействие фермионов, например, фотон и глюон. Уже известно два десятка частиц, и ученые продолжают открывать новые.

Логично предположить, что и гравитационное взаимодействие передается своим бозоном. Его пока не нашли, однако описали свойства и придумали название — гравитон.

Но объединить теории не получается. По Стандартной модели, элементарные частицы — безразмерные точки, которые взаимодействуют на нулевых расстояниях. Если это правило применить к гравитону, уравнения дают бесконечные результаты, что лишает их смысла. Это лишь одно из противоречий, но оно хорошо иллюстрирует, как далека одна физика от другой.

Поэтому ученые ищут альтернативную теорию, способную объединить все теории в одну. Такую теорию назвали единой теорией поля, или теорией всего.

Фермионы
формируют все типы материи, кроме темной

Бозоны
переносят энергию между фермионами

Теория струн может объединить научный мир

Теория струн в этой роли выглядит привлекательнее других, так как сходу решает главное противоречие. Квантовые струны вибрируют, поэтому расстояние между ними больше нуля, и невозможных результатов вычислений для гравитона удается избежать. Да и сам гравитон неплохо вписывается в концепцию струн.

Но теория струн не доказана экспериментами, ее достижения остаются на бумаге. Тем удивительнее тот факт, что за 40 лет от нее не отказались — настолько велик ее потенциал. Чтобы понять, почему так происходит, оглянемся назад и посмотрим, как она развивалась.

Теория струн пережила две революции

Габриэле Венециано
(род. 1942)

Поначалу теорию струн вовсе не считали претендентом на объединение физики. Ее и открыли-то случайно. В 1968 году молодой физик-теоретик Габриэле Венециано изучал сильные взаимодействия внутри атомного ядра. Неожиданно он обнаружил, что их неплохо описывает бета-функция Эйлера — набор уравнений, которые за 200 лет до того составил швейцарский математик Леонард Эйлер. Это было странно: в те времена атом считался неделимым, а работа Эйлера решала исключительно математические задачи. Никто не понимал, почему уравнения работают, но ими активно пользовались.

Физический смысл бета-функции Эйлера выяснили два года спустя. Трое физиков, Йохиро Намбу, Хольгер Нильсен и Леонард Сасскинд, предположили, что элементарные частицы могут быть не точками, а одномерными вибрирующими струнами. Сильное взаимодействие для таких объектов уравнения Эйлера описывали идеально. Первый вариант теории струн назвали бозонным, так как он описывал струнную природу бозонов, ответственных за взаимодействия материи, и не касался фермионов, из которых материя состоит.

Теория была сырой. В ней фигурировали тахионы, а основные предсказания противоречили результатам экспериментов. И хотя от тахионов удалось избавиться с помощью многомерности Калуцы, теория струн не прижилась.

Авторы теории струн

  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен

Авторы теории струн

  • Габриэле Венециано
  • Йохиро Намбу
  • Хольгер Нильсен
  • Леонард Сасскинд
  • Джон Шварц
  • Майкл Грин
  • Эдвард Виттен

Но верные сторонники у теории остались. В 1971 году Пьер Рамон добавил в теорию струн фермионы, сократив количество измерений с 26 до десяти. Это положило начало теории суперсимметрии.

Читайте также:  Самое энергоемкое топливо во вселенной

Она гласила, что каждому фермиону соответствует свой бозон, а значит, материя и энергия симметричны. Неважно, что наблюдаемая вселенная несимметрична, говорил Рамон, существуют условия, при которых симметрия все же соблюдается. А если по теории струн фермионы и бозоны кодируются одними и теми же объектами, то в этих условиях материя может превращаться в энергию, и наоборот. Это свойство струн назвали суперсимметричностью, а саму теорию струн — суперструнной.

В 1974 году Джон Шварц и Джоэль Шерк обнаружили, что некоторые свойства струн удивительно точно совпали со свойствами предполагаемого переносчика гравитации — гравитона. С этого момента теория начала всерьез претендовать на обобщающую.

измерений пространства-времени было в первой теории суперструн

измерений пространства-времени было в первой теории суперструн

«Математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое»

Джон Шварц, профессор, соавтор теории суперструн

«Математическая структура теории струн столь прекрасна и имеет столько поразительных свойств, что, несомненно, должна указывать на что-то более глубокое»

Джон Шварц, профессор, соавтор теории суперструн

Первая суперструнная революция произошла в 1984 году. Джон Шварц и Майкл Грин представили математическую модель, которая показывала, что многие противоречия между теорией струн и Стандартной моделью устранимы. Новые уравнения также связывали теорию со всеми видами материи и энергии. Научный мир охватила лихорадка — физики бросали свои исследования и переключались на изучение струн.

С 1984 по 1986 года было написано более тысячи работ по теории струн. Они показали, что многие положения Стандартной модели и теории гравитации, которые годами собирались по крупицам, естественным образом вытекают из струнной физики. Исследования убедили ученых, что объединяющая теория не за горами.

«Момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории»

Майкл Грин, профессор, соавтор теории суперструн

«Момент, когда вы знакомитесь с теорией струн и осознаете, что почти все основные достижения физики последнего столетия следуют — и следуют с такой элегантностью — из столь простой отправной точки, ясно демонстрирует вам всю невероятную мощь этой теории»

Майкл Грин, профессор, соавтор теории суперструн

Но теория струн не спешила раскрывать свои тайны. На месте решенных проблем возникали новые. Ученые обнаружили, что существует не одна, а пять теорий суперструн. В них струны обладали разными типами суперсимметрии, и не было никакой возможности понять, какая из теорий верна.

Математические методы имели свой предел. Физики привыкли к сложным уравнениям, которые не дают точных результатов, однако для теории струн не получалось написать даже точных уравнений. А приближенные результаты приближенных уравнений не давали ответов. Стало ясно, что для изучения теории нужна новая математика, но никто не знал, какая именно. Пыл ученых поутих.

Вторая суперструнная революция прогремела в 1995 году. Конец застою положил доклад Эдварда Виттена на конференции по теории струн в Южной Калифорнии. Виттен показал, что все пять теорий — это частные случаи одной, более общей теории суперструн, в которой не десять измерений, а одиннадцать. Объединяющую теорию Виттен назвал М-теорией, или Матерью всех теорий, от английского слова Mother.

Но важнее было другое. М-теория Виттена настолько хорошо описывала эффект гравитации в теории суперструн, что ее назвали суперсимметричной теорией гравитации, или теорией супергравитации. Это воодушевило ученых, и научные журналы вновь заполнили публикации по струнной физике.

измерений пространства-времени в современной теории суперструн

измерений пространства-времени в современной теории суперструн

Эдвард Виттен, профессор, автор М-теории

«Теория струн — это часть физики двадцать первого века, случайно попавшая в век двадцатый. Могут пройти десятилетия, или даже столетия, прежде чем она будет полностью разработана и осознана»

«Теория струн — это часть физики двадцать первого века, случайно попавшая в век двадцатый. Могут пройти десятилетия, или даже столетия, прежде чем она будет полностью разработана и осознана»

Эдвард Виттен, профессор, автор М-теории

Отголоски этой революции слышны и сегодня. Но несмотря на все усилия ученых, в теории струн больше вопросов, чем ответов. Современная наука пытается построить модели многомерной вселенной и изучает измерения как мембраны пространства. Их называют бранами — помните пустоту, на которой натянуты открытые струны? Предполагают, что и сами струны могут оказаться двух- или трехмерными. Даже говорят о новой 12-мерной фундаментальной теории — F-теории, Отце всех теорий, от слова Father. История теории струн далека от завершения.

Теорию струн пока не доказали — но и не опровергли

Главная проблема теории — в отсутствии прямых доказательств. Да, из нее вытекают другие теории, ученые складывают 2 и 2, и получается 4. Но это не значит, что четверка состоит из двоек. Эксперименты на Большой адронном коллайдере пока не обнаружили и суперсимметрию, что подтвердило бы единую структурную основу вселенной и сыграло бы на руку сторонникам струнной физики. Но нет и опровержений. А потому элегантная математика теории струн продолжает будоражить умы ученых, обещая разгадки всех тайн мироздания.

Говоря о теории струн, нельзя не упомянуть Брайана Грина, профессора Колумбийского университета и неутомимого популяризатора теории. Грин выступает с лекциями и снимается на телевидении. В 2000 году его книга «Элегантная вселенная. Суперструны, скрытые размерности и поиск окончательной теории» стала финалистом Пулитцеровской премии. В 2011 он сыграл себя в 83-й серии «Теории Большого Взрыва». В 2013 году посетил Московский политехнический институт и дал интервью «Ленте-ру» о суперструнах, последних работах и планах на будущее. Спасибо, Брайан!

Теория струн для новичков

Так выглядит книга Брайана Грина «Элегантная Вселенная. Суперструны, скрытые размерности и поиск окончательной теории», финалист Пулитцеровской премии 2000 года.

Хотите стать знатоком теории струн — начните с этой книги.

Если не хотите становиться знатоком теории струн, но хотите понимать, в каком мире живете, запомните шпаргалку:

  1. Вселенная состоит из нитей энергии — квантовых струн, которые вибрируют как струны музыкальных инструментов. Разная частота вибрации превращает струны в разные частицы.
  2. Концы струн могут быть свободны, а могут замыкаться друг на друга, образуя петли. Струны все время замыкаются, размыкаются и обмениваются энергией с другими струнами.
  3. Квантовые струны существуют в 11-мерной вселенной. Дополнительные 7 измерений свернуты в неуловимо малые формы пространства-времени, поэтому мы их не видим. Это называется компактификацией измерений.
  4. Если бы мы узнали, как именно свернуты измерения в нашей вселенной, то, возможно, смогли бы путешествовать во времени и к другим звездам. Но пока это невозможно — слишком много вариантов нужно перебрать. Их бы хватило на все возможные вселенные.
  5. Теория струн может объединить все физические теории и открыть нам тайны мироздания — для этого есть все предпосылки. Но пока нет доказательств.
  6. Из теории струн логически следуют другие открытия современной науки. К сожалению, это ничего не доказывает.
  7. Теория струн пережила две суперструнные революции и многолетние периоды забвения. Одни ученые считают ее научной фантастикой, другие верят, что новые технологии помогут ее доказать.
  8. Самое главное: если планируете рассказать о теории струн друзьям, убедитесь, что среди них нет физика — сбережете время и нервы. И будете выглядеть, как Брайан Грин в Политехническом институте:

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector