Меню

Тепло что создавало солнце

Почему Солнце горячее — объяснение для детей

Солнце – самое горячее место в Солнечной системе: описание для детей, температура в слоях и ядре, ядерный синтез, нагрев атмосферы, движение тепла к Земле.

Расскажем о том, почему Солнце горячее на доступном для детей языке. Данная информация будет полезна детям и их родителям.

Даже для самых маленьких не секрет, что благодаря Солнцу на нашей планете возможна жизнь. Нам повезло, так как Земля находится на правильной позиции: не слишком близко, чтобы сгореть, но и не далеко, чтобы превратиться в ледышку. Солнце – это сфера горячих газов, выделяющих тепло, нагревающее все вокруг. Родители или в учителя в школе должны объяснить детям, что это тепло распространяется на всю Солнечную систему. Конечно, чем дальше объекты, тем холоднее у них обстановка. Но почему Солнце вырабатывает так много тепла?

Если вы любите любоваться звездами, то должны знать, что по своему составу и принципу работы – это солнца. В самом начале своего формирования мы видим всего лишь массу вращающихся газов с ядром (центр), сдавливающим атомы (ядерный синтез). Чтобы сделать объяснение для детей максимально запоминающимся, скажите, что это сильное давление вырабатывает температуру в 15 миллионов градусов. То есть, вы сгорите, даже не успев приблизиться.

Чем ближе вы к источнику, тем теплее становится. Более того, у Солнца есть своя «атмосфера», сохраняющая нагрев. Тепловые молекулы выделяются из ядра, перемещаясь вокруг первого слоя (от ядра) – радиационная зона. Они двигаются там миллионы лет, а потом выбираются наружу. Следующий шар – конвективная зона с температурой в 2 миллиона градусов. Они остаются там, медленно производя огромные пузыри ионизированных атомов, из которых появляется горячая плазма. Дальше молекулы переходят в фотосферу.

Наверное, дети уже догадались, что с каждым внешним слоем температура падает. Так вот в фотосфере сохраняется 5500 °С. Это и есть солнечный свет. Когда мы замечаем на Солнце пятна, то это просто более прохладные области. Их центр нагревается до 4000 °С.

Следующий уровень накаляется до 4320 °С – хромосфера. Обычно вы не видите ее свет, потому что он слабее, чем фотосфера. Но он становится заметным в моменты солнечного затмения. Тогда Луна перекрывает фотосферу, и становится заметным красный ободок – хромосфера.

Корона нагревается до высоких температур, вырабатывая огромные плазменные потоки, достигающие максимума в точке короны. Она может приближаться к 2 миллионам градусов. По мере охлаждения короны тепло теряется и выходит в виде солнечного ветра. Нужно объяснить детям, что, чтобы добраться до Земли, солнечному теплу нужно преодолеть 93 миллиона миль. На это уходит 8 минут.

Теперь вы понимаете, почему Солнце горячее и сохраняет собственную температуру. Используйте наши фото, видео, рисунки и подвижные модели онлайн, чтобы лучше разобраться в описании и характеристике звезды. Кроме того, на сайте есть онлайн телескопы, наблюдающие за Солнцем в режиме реального времени, и 3D-модель Солнечной системы со всеми планетами, картой Солнца и видом на поверхность.

Источник

Как появилась жизнь на Земле, если в прошлом Солнце давало меньше тепла

В истории Солнечной системы и в первую очередь нашей с вами планеты (впрочем, это также касается и Марса) есть одна совершенно непостижимая загадка, связанная с Солнцем.

Парадокс молодого тусклого Солнца

Дело в том, что звезды подобные Солнцу встречаются во Вселенной не так уж редко, а потому у нас была возможность довольно подробно проследить их эволюцию. И всегда выходило так, что рождаются они очень тусклыми и только со временем “разогреваются”, начиная сиять, как наше светило сейчас.

Если бы все шло как предсказали ученые, Земля нашего времени только-только сбросила бы вековые льды, а до динозавров были ещё миллионы лет. К счастью, природа нашла какой-то особенный выход из этого положения.

И будь оно в нашем случае также, Земля, родившаяся вместе с Солнцем 4,5 миллиарда лет назад, должна была как минимум два миллиарда лет оставаться очень холодным миром, на котором не могло быть и речи о жидкой воде, а значит, и жизни в той форме, к которой мы привыкли. Однако геологические свидетельства говорят о прямо противоположном.

Через два миллиарда лет после появления на Земле уже вовсю откладывались минералы, образующиеся только при наличии жидкой воды. Более того, в некоторых ископаемых можно обнаружить следы бактерий и сделать вывод, что к моменту потенциального выхода на условия обитаемости Земля уже миллиард лет как поддерживала жизнь.

Читайте также:  Какому виду звезд относится солнце

Этот известный парадокс молодого тусклого Солнца имеет несколько объясняющих его теорий, ни одна из которых пока не может занять главенствующее место из-за скудности информации о тех временах.

Что представляет собой механизм парадокса молодого тусклого Солнца

Парадокс тусклого молодого Солнца возник в 1960-х годах, когда впервые было проведено численное моделирование химических процессов в звезде и оценено их влияние на яркость солнцеподобной звезды. Был получен четкий результат.

Молодое Солнце имело избыток водорода, своего основного топлива, в ядре. Из-за большого количества легкого элемента ядро Солнца расширилось, потеряв температуру.

Как результат Земля должна была получать на четверть или даже треть меньше тепла, чем сейчас. Температура поверхности планеты из-за этого в среднем должна упасть на 20 градусов и стать на 10 градусов меньше температуры замерзания воды.

Но образцы возрастом до 4,4 миллиарда лет, то есть всего через 100 миллионов лет после образования планеты, уже содержат минералы, указывающие на наличие жидкой воды на планете. Столь древние образцы не дают полной уверенности в наличии воды в то время, но уже 3,5 миллиарда лет назад появляются признаки жизнедеятельности микробов. Выходит, жизнь процветала на планете, которая по всем законам должна была быть ледяной пустыней.

Иллюстрация работы парникового эффекта. Классического парникового эффекта – так как в случае с молодой Землей, главный парниковый газ нам не известен

Попытки решения загадки зарождения жизни на Земле в условиях слабого Солнца

Неизвестный парниковый газ в атмосфере древней Земли

Одно из первых и до сих пор достаточно актуальная гипотеза решения этой проблемы заключалось в наличии какого-то парникового газа в атмосфере Земли, причем в очень и очень больших количествах. И это не может быть современный парниковый газ: диоксид углерода (углекислый газ). Его содержание в атмосфере древней Земли можно оценить по наличию в отложениях минералов, образующихся, когда углекислый газ попадает в почву с дождем.

В течение архея, продолжавшегося с 4 до 2.5 миллиардов лет назад, содержание углекислого газа было заметно выше, чем сейчас. Однако для того, чтобы поддерживать температуру мирового океана на уровне 5 градусов, чтобы он точно не замерзал, этого газа требуется в 300 раз больше, чем сейчас, но… самые смелые оценки, сделанные на основе геологической информации, не превышают тридцатикратного современного уровня.

Тем не менее углекислый газ мог быть “заводилой” в газовой смеси, которая поддерживала тепло на молодой Земле.

Еще один известный парниковый газ, аммиак, быстро разрушился бы в атмосфере древней Земли, лишенной мощного озонового слоя. Метан тоже отпадает, так как его нужно было настолько много, что он начал бы работать в обратном направлении – не накапливать тепло, а заслонять Землю от солнечных лучей туманной пеленой.

Азот и водород могли бы стать подходящими кандидатами, но сложно сказать, была ли когда-либо атмосфера нашей планеты настолько плотной, что в ней удерживались эти легкие газы. В целом, любой парниковый газ поднимает не меньше проблем, чем их разрешает.

Может быть изменились параметры самой планеты Земля?

4,5 миллиарда лет – большой срок, чтоб изменить до неузнаваемости планету, причем не только её “внешность”, но и положение в космосе. Влияние гравитационного поля Луны, которые сегодня в течение суток можно наблюдать в виде приливов, на временном интервале в миллиарды лет проявляется в замедлении вращения планеты вокруг оси.

Планета стремится встать одной стороной к Луне, как сделал наш спутник, масса которого намного меньше, отчего он и оказался захвачен приливными силами раньше. Другое положение спутника, другая скорость вращения планеты и т.п. – все это могло заметно повлиять на структуры потоков тепла, передающих энергию от экватора к полюсу. Это, в свою очередь, влияло на распределение ледяного покрова планеты. А так как лед отражает свет сильнее, чем суша или океаны, уменьшение его территории означает увеличение получаемого тепла.

Далее, континенты Земли миллиарды лет назад были совсем другими, другим было и общее количество суши. Океаны поглощают больше тепла Солнца, а значит, если суши было меньше, то тепла планета получала больше. Или если большая часть суши скопилась ближе к полюсам, подставив наиболее освещенную экваториальную часть на долю океана, температура планеты опять должна повыситься.

Наконец, изменение химического состава облаков могло привести к проникновению большего количества тепла. Все это могло объяснить парадокс холодного Солнца без парниковых газов. Выделение наиболее вероятного эффекта усложняется ограниченными знаниями о древней Земле и слишком грубыми климатическими моделями. Попытка включить в них все эти факторы приводит к необозримым результатам.

Читайте также:  Закат солнца зимой во сколько

Может быть изменялась не наша планета, а вся Солнечная система?

Помимо манипуляций с параметрами Земли, есть и совершенно другая возможность объяснения парадокса тусклого молодого Солнца.

Время от времени возникают предположения о том, что Солнце в прошлом могло быть даже больше, чем сейчас, ведь оно же теряет массу в виде постоянного солнечного ветра и коротких, но мощных корональных выбросов. Во время образования светило могло быть всего на 2.5% тяжелее, чего вполне достаточно для объяснения парадокса. Точнее, для его полного снятия – ведь “увеличенное” (хотя и по прежнему “тусклое”) Солнце тогда светило бы так же, как сейчас.

Впрочем это не доказуемо. Зато вполне доказуемо вот что:

Наконец, последнее предположение – изменения в масштабе всей Солнечной системе. В свое время, известный математик Владимир Игоревич Арнольд наглядно доказал, что Солнечная система является удивительно устойчивым космическим образованием, на огромном интервале времени. Огромном, но все же конечном.

Как когда-то по Солнечной системе “гулял” гигант Юпитер, так примеру, малыш Меркурий может сняться со своей орбиты и начать путешествие от Солнца, что приведет к столкновению с одной из внутренних планет. А что верно для будущего, может быть верно и для прошлого.

Эволюция Солнца, хотя параметры нашей звезды за миллиарды лет особо не изменились, количество тепла получаемого Землей сейчас и 4 миллиарда лет назад, отличается примерно на треть.

Земля ведь тоже могла образоваться несколько ближе к Солнцу, и различия в несколько процентов в большой полуоси орбиты нашей планеты достаточно для объяснения парадокса тусклого молодого Солнца. К переходу на новую орбиту могло привести грандиозное столкновение, родившее современную Венеру (хотя кратеры планеты указывают на молодую поверхность планеты – всего около полумиллиарда лет).

Последовавшие за этим изменения в гравитационном поле Солнечной системы привели к ее небольшой подстройке. И именно поэтому сейчас Земля не поджарилась под лучами более теплого Солнца в наше время.

Парадокс тусклого молодого Солнца и зоны обитаемости далеких звезд

Если посмотреть на тему этой статьи несколько шире, и выйти мысленно за пределы Солнечной системы, то мы увидим любопытную прикладную особенность отмеченных выше теорий, применимо для поиска потенциально обитаемых экзопланет.

Все то, о чем мы говорили в отношении Земли, может быть применено и к другим планетам похожим на Землю. Я уже не раз отмечал, что само понятие “зоны обитаемости” звезды, во многом вынужденное – просто именно на определенном расстоянии, от звезды определенного класса, шанс найти условия сходные земным наиболее высок. Но ведь это порождает и определенную ограниченность обзора – мы совершенно не рассматриваем в качестве кандидатов на обнаружение жизни или условий сходных земным, у экзопланет находящихся вне зоны обитаемости.

Но как было показано выше, некоторые локальные эффекты, подобно парниковому, вызванному комбинацией каких-то газов, которые по отдельности не способны согреть планету, но вместе дают кумулятивный эффект, имеет место и для экзопланет.

В зависимости от наличия парниковых газов, внутреннего запаса тепла и действия приливных сил планете может понадобиться больше или меньше тепла чтобы поддерживать на поверхности жидкую воду, не давая ей ни замерзнуть, ни испариться.

Атмосферы сверхземель могут оказаться особенно богаты водородом и азотом, делая эти гигантские, но все же твердые миры, хорошей целью для поисков признаков жизни.

Источник

Как работает и греет Солнце

Солнце — главный источник энергии на Земле. Без него невозможным было бы существование жизни. И хотя все буквально вертится вокруг Солнца, мы очень редко задумываемся над тем, как работает наша звезда.

Структура Солнца

Чтобы понять, как работает Солнце, сначала нужно разобраться в его структуре.

  • Ядро.
  • Зона лучистого переноса.
  • Конвективная зона.
  • Атмосфера: фотосфера, хромосфера, корона, солнечный ветер.

Диаметр солнечного ядра составляет 150—175 000 км, около 20—25% солнечного радиуса. Температура ядра достигает 14 млн градусов по Кельвину. Внутри постоянно происходят термоядерные реакции с образованием гелия. Именно в ядре в результате данной реакции выделяется энергия, а так же тепло. Остальная часть Солнца нагрета этой энергией, она проходит сквозь все слои до фотосферы.

Зона лучистого переноса находится над ядром. Энергия переносится с помощью излучения фотонов и их поглощения.

Над зоной лучистого переноса находится конвективная зона. Здесь перенос энергии осуществляется не переизлучением, а переносом вещества. С высокой скоростью более холодное вещество фотосферы проникает в конвективную зону, а излучение из зоны лучистого переноса поднимается на поверхность — это и есть конвекция.

Читайте также:  Ярмарка путевок самое яркое солнце

Фотосфера — это видимая поверхность Солнца. Из этого слоя исходит большая часть видимого излучения. В фотосферу уже не проникает излучение более глубоких слоев. Средняя температура слоя достигает 5778 К.

Хромосфера окружает фотосферу, она имеет красноватый оттенок. Из поверхности хромосферы постоянно происходят выбросы — спикулы.

Последняя внешняя оболочка нашей звезды — корона, состоящая из энергетических извержений и протуберанцев, образующих солнечный ветер, распространяющийся к самым дальним уголкам солнечной системы. Средняя температура короны — 1—2 млн К, но есть участки с 20 млн К.

Солнечный ветер — это поток ионизированных частиц, распространяющийся до границ гелиосферы со скоростью около 400 км/с. Многие явления на Земле связаны с солнечным ветром, например, полярное сияние и магнитные бури.

Солнечное излучение


Плазма Солнца обладает высокой электропроводностью, что способствует появлению электрических токов и магнитных полей.

Солнце — самый сильный излучатель электромагнитных волн в мире, который дает нам:

  • ультрафиолетовые лучи;
  • видимый свет — 44% солнечной энергии (преимущественно желто-зеленый спектр);
  • инфракрасные лучи — 48%;
  • рентгеновское излучение;
  • радиационное излучение.

Лишь 8% энергии отводится на ультрафиолетовое, рентгеновское и радиационное излучение. Видимый свет расположен между лучами инфракрасного и ультрафиолетового спектра.

Также Солнце является мощным источником радиоволн нетепловой природы. Помимо всевозможных электромагнитных лучей излучается постоянный поток частиц: электронов, протонов, нейтрино и так далее.

Все виды излучения оказывают свое влияние Землю. Именно это влияние мы ощущаем.

Воздействие УФ лучей

Ультрафиолетовые лучи воздействуют на Землю и все живые существа. Благодаря им существует озоновый слой, так как УФ-лучи разрушают кислород, который модифицируется в озон. Магнитное поле Земли в свою очередь формирует озоновый слой, который, как ни парадоксально, ослабляет силу воздействия УФ.

На живые организмы и окружающую среду ультрафиолет влияет многогранно:

  • способствует выработке витамина D;
  • обладает антисептическими свойствами;
  • вызывает появление загара;
  • усиливает работу кроветворных органов;
  • повышает свертываемость крови;
  • увеличивается щелочной резерв;
  • дезинфицирует поверхности предметов и жидкости;
  • стимулирует обменные процессы.

Именно ультрафиолетовое излучение способствует самоочищению атмосферы, устраняет смог, частицы дыма и пыли.

В зависимости от широты сила воздействия УФ излучения сильно изменяется.

Воздействие ИК лучей: почему и как Солнце греет

Все тепло на Земле — это инфракрасные лучи, которые появляются благодаря термоядерному синтезу водорода с образованием гелия. Эта реакция сопровождается огромным выбросом лучистой энергии. До земли доходит порядка 1000 Ватт на квадратный метр. Именно за это ИК излучение очень часто называют тепловым.

Удивительно, но Земля выступает в роли инфракрасного излучателя. Планета, а также облака поглощают ИК лучи, а затем переизлучают эту энергию обратно в атмосферу. Такие вещества как водяной пар, капли воды, метан, диоксид углерода, азот, некоторые соединения фтора и серы излучают ИК лучи во всех направлениях. Именно благодаря этому имеет место парниковый эффект, который поддерживает поверхность Земли в постоянно подогретом состоянии.

Инфракрасные лучи не только нагревают поверхности предметов и живых существ, но и оказывают другое влияние:

  • обеззараживают;
  • улучшают метаболизм;
  • стимулируют кровообращение;
  • снимают болевые ощущения;
  • нормализуют водно-солевой баланс;
  • укрепляют иммунитет.

Почему зимой Солнце греет слабо

Так как Земля вращается вокруг Солнца с некоторым наклоном оси, в разное время года происходит отклонение полюсов. В первой половине года Северный полюс повернут к Солнцу, в во второй — Южный. Соответственно, меняется угол воздействия солнечной энергии, а также мощность.

То полушарие, которое повернуто к Солнцу, получает больше электромагнитных и других лучей, нагревается сильнее — наступает лето. Полушарие, которое отвернуто от солнца получает падающие вскользь лучи — наступает зима. Из-за измененного угла падения поверхность и атмосфера прогреваются слабее.

Из-за изменения угла наклона зимой Солнце проходится низко над горизонтом. Соответственно, его лучи проходят длинный путь сквозь атмосферу. Зимой тепловая энергия растрачивается сильнее, за счет того что инфракрасные лучи встречают на своем пути и обогревают в 4-6 раз больше воздуха. До поверхности планеты доходит значительно меньше тепла, поэтому кажется, что Солнце почти не греет.

Так как прозрачность воздуха достаточно высока, видимая часть солнечного излучения доходит в любое время года практически в неизменном количестве.

Источник

Adblock
detector