Тепло получаемое от солнца за год
Зимнее отопление летним Солнцем
Начнём с немногих интересных цифр. Учёным удалось измерить, сколько калорий посылает Солнце, заливающее своим светом какую-нибудь определённую площадку. Если взять Москву, то каждый квадратный метр её площади получает от Солнца в три зимних месяца (ноябрь, декабрь, январь) 30 тыс. калорий, зато в весенние и летние месяцы — 500 тыс. калорий. Сколько квадратных метров занимает наша столица, столько раз по полмиллиона калорий даёт ей Солнце в течение тёплого периода года. Куда же девается всё это огромное количество теплоты? Большая часть его вновь теряется и рассеивается в те же самые сутки, когда теплота накопилась. Только очень незначительная часть прогревает почву на небольшую глубину, да и то не надолго: едва наступят первые осенние холода, накопленная в почве теплота снова рассеивается.
Короче сказать, щедрые дары дневного светила не сохраняются нами, а проносятся мимо нас. Нельзя ли этот огромный тепловой капитал, сам плывущий в наши руки, каким-нибудь способом удержать и сохранить впрок?
Над этой идеей размышлял в последние годы своей жизни выдающийся московский физик проф. В. А. Михельсон, скончавшийся в феврале 1927 г. Мысли его вылились в строгий и стройный план использования летнего солнечного тепла для зимнего отопления московских зданий и постепенного улучшения климата нашей столицы. Проект этот, тщательно разработанный покойным учёным, был напечатан в своё время в специальном «Журнале прикладной физики».
Михельсон исходил в своих расчётах из следующих данных. Московский дом, занимающий площадь в тысячу квадратных метров, получает от Солнца в течение семи месяцев (весной и летом) 500 000*1000 = 500 000 000 калорий. Для отоплен я же этого дома в продолжение пяти осенне-зимних месяцев нужно израсходовать 360 000 000 калорий.
«Следовательно,- заключает учёный,- Солнце вообще на каждое здание посылает количество тепла, с избытком покрывающее всю его потребность в зимнем отоплении. Задача заключается в том, как поглотить и сохранить эту солнечную теплоту с весны и лета до зимы, как предохранить её от бесполезного рассеяния».
Место, где по проекту Михельсона предлагается накоплять и сохранять солнечную теплоту, находится — где бы вы думали?- под землёй, на глубине 20 и более метров.
На первый взгляд кажется нелепым прятать дары солнечных лучей глубоко в подземелье. Однако дело представится не столь несообразным, если вспомним, как хорошо почва хранит теплоту. Почва — превосходный теплоизолятор; она очень медленно пропускает сквозь себя теплоту.
«Если нам удастся,- пишет Михельсон,- в течение лета прогреть солнечной теплотой мощный слой земли под городом на глубине между 20 и 30 м, то теплота эта к зиме распространится во все стороны в бока, вверх и вниз не более как на 10 м и не успеет даже дойти до земной поверхности».
Как же предполагал автор проекта накоплять впрок под землёй теплоту, посылаемую Солнцем?
Чтобы понять основную идею этого остроумного проекта, напомним два элементарных физических факта. Всем известно явление холода при испарении: испаряющаяся жидкость охлаждает окружающие предметы (вспомним холод в мокром платье), т. е. отнимает от них теплоту. Менее известно обратное явление: пары, сгущающиеся снова в жидкость, возвращают теплоту, нагревают окружающие предметы. Вода в форме пара в состоянии, сгущаясь, нагреть до 100° вшестеро большее по весу количество жидкой воды. Отметив ещё и другой факт,- что газ при сжатии нагревается,- обратимся снова к проекту Михельсона.
Весною и летом крыши наших домов залиты солнечными лучами и, конечно, нагреваются ими. Теплота эта утрачивается ночью при остывании крыши,- она излучается в окружающее пространство. Идея Михельсона состоит, как уже сказано, в том, чтобы не давать этой теплоте рассеиваться бесплодно, а сохранять её впрок и пользоваться ею зимой для отопления жилищ. Система труб на крышах домов должна непрерывно отводить нагреваемую в них Солнцем воду под землю на глубину 20-30 м ниже фундамента.
На такую глубину внешние температурные колебания не проникают — это слой постоянной температуры, равной в Москве +6° Ц. Циркулируя по проложенным в почве трупам, вода, нагревшаяся на крыше, будет отдавать почве избыток тепла, а остыв, вновь будет перекачана на крышу, чтобы, нагревшись, опять поступить под почву, и т. д. Короче, теплота, полученная летом от Солнца, будет запасаться в почвенных слоях под домом (рис. 89).
Рис. 89. Проект зимнего отопления домов теплотой летнего Солнца
Расскажем теперь, как можно будет воспользоваться накопленной теплотой подземной печки для зимнего отопления жилищ. Михельсон предлагает для этого такую установку. Сеть труб на крыше в зимнее время выключается. Тёплая подземная вода поступает в особый сосуд (испаритель) со змеевиком, в котором вследствие искусственного понижения давления испаряется какая-нибудь жидкость, например спирт. Пары спирта поглощают при своём образовании часть теплоты воды, окружающей змеевик. Затем действием особого насоса они перекачиваются в змеевик другого сосуда (сгустителя), где вследствие повышенного давления вновь сгущаются в жидкость, отдавая теплоту воде, которая окружает змеевик. Эта поступающая из почвы вода может быть благодаря указанному процессу нагрета до 55° (по расчётам Михельсона). Такая вода уже достаточно тепла для водяного отопления.
Конечно, необходим некоторый расход топлива (или электрической энергии), чтобы поддерживать циркуляцию — впрочем, очень медленную — воды по трубам от крыши в почву, а также для работы насоса при испарителе и сгустителе. Но расход этот весьма невелик. Расчёт показывает, что в установке Михельсона топливо используется в три раза выгоднее, чем в самой совершенной из существующих систем отопления. Другими словами, проект обещает экономию топлива в 60%. Если вспомним, что отопление жилищ составляет главную статью расхода топлива, поглощающую больше, чем вся промышленность, то значение подобной экономии станет в наших глазах ещё важнее.
Для осуществления всего этого потребуются капитальные подземные работы.
«Под городом,- пишет Михельсон,- придётся произвести значительные горные работы: заложить несколько шахт глубиною в 30 м, а затем на глубинах 20 и 30 м проложить двойную сеть горизонтальных штолен с трубами для циркуляции воды. Густота сети труб должна быть такова, чтобы в течение шести месяцев, с апреля по сентябрь, можно было сплошь прогреть солнечной теплотой слой материка в 20 или 30 м мощности. Какую толщу и до какой степени удастся прогреть, это будет зависеть главным образом от того, какую площадь солнечных поглотителей можно будет устроить на крышах города.
«Одни и те же трубы, наполненные водою, будут служить как для летнего прогревания почвы, так и для отопления города зимой. Летом подземная сеть труб через посредство насосов соединяется с сетью поглощательной, расположенной на крышах. Зимой подземная сеть соединяется с испарителями всех отопительных машин, которые повышают температуру до 55° и питают котлы водяного отопления. В тёмные месяцы (ноябрь-февраль) поглотители солнечной энергии выключаются. В ясные дни марта, когда отопление всё же нужно, можно совершенно исключить подземную сеть и питать испарители отопительных машин непосредственно подогретой водой, спускающейся с крыш».
Этим не исчерпывается всё то, что обещает дать проект Михельсона в случае осуществления. Можно рассчитать сеть труб на крышах так, чтобы приход тепла от Солнца за год был больше расхода его на отопление. Тогда к концу года будет всякий раз оставаться неизрасходованный запас теплоты. Этот запас с каждым годом будет расти, потому что к прежним остаткам будет прибавляться новый. Что же в результате всего этого получится?
«Средняя годовая температура почвы будет постепенно повышаться. Зимнее промерзание почвы очень скоро исчезнет. Через много лет это постепенное накопление тепла в почве может весьма заметно отразиться на климате города, и притом тем больше, чем больше площадь города. Снежный покров будет исчезать раньше и устанавливаться позднее, чем в окружающей области. Общее повышение температуры почвы, а, следовательно, и воздуха, уменьшит потребность в отоплении. Поэтому накопление тепла в почве и изменение городского климата будет идти ускоренным темпом. Тогда весь город будет как бы тёплым оазисом, перенесённым из более южных широт в северные».
Вы видите, что весь климат нашей столицы может в сравнительно короткий срок измениться до неузнаваемости — из засыпаемого снегом уголка Севера превратиться в ласкаемый тёплым воздухом благодатный край субтропического пояса.
Источник
Солнечная энергия
Опубликовано 07 Сен 2015
Рубрика: О жизни | 21 комментарий
Слияние атомов водорода и рождение атомов гелия, происходящее в недрах звезд из-за невероятно огромного давления, вызванного суперсилами гравитации, сопровождается сверхмощным выделением энергии. Идет термоядерная реакция и на ближайшей к нам звезде по имени Солнце.
Солнечная энергия (точнее — крохотная доля от всей, излученной Солнцем в пространство энергии) достигает Земли и обеспечивает существование жизни на нашей планете в том виде, в каком мы ее знаем.
Интенсивность излучения Солнца «на входе» в атмосферу Земли составляет 1,367 КВт/м 2 .
Атмосфера планеты поглощает часть потока солнечной энергии. На разных широтах, в разное время года, в разное время суток, на разной высоте над уровнем моря и при различной облачности мощность солнечного изучения, приходящаяся на один квадратный метр поверхности перпендикулярной лучам составляет
от 0 КВт/м 2 до 1,0 КВт/м 2 .
Почему солнечное излучение имеет различную интенсивность можно понять, рассмотрев рисунок ниже.
В различных условиях лучам Солнца приходится преодолевать до поверхности Земли через атмосферу разные расстояния! Чем длиннее путь лучей Солнца через атмосферу, тем больше поглощение, тем меньше энергии дойдет до поверхности, до точки А.
1,0 КВт/м 2 – это максимум интенсивности в ясную погоду на уровне моря в истинный астрономический полдень на экваторе в дни весеннего (
20 марта) и осеннего (
22 сентября) равноденствий!
Это означает, что никакое устройство, созданное человеком для преобразования солнечной энергии в тепловую или электрическую, имеющее рабочую площадь 1,0 м 2 никогда не выдаст мощность более 1,0 КВт!
В средних широтах России солнечная энергия имеет интенсивность потока летом в ясный полдень – до 0,8 КВт/м 2 , зимой – всего лишь до 0,3 КВт/м 2 .
По справочным таблицам (смотри ссылки в конце статьи) в среднем за год количество солнечной энергии, падающей на горизонтальную площадку площадью 1м 2 :
На момент написания статьи, к примеру, в Омске цена 1 КВт*ч электроэнергии составляла 3,32 руб. для населения. Образно выражаясь, можно сказать, что Солнце «высыпает» в год в Омске на каждый квадратный метр 4183,20 руб. (11,46 руб. ежедневно) в переводе на стоимость электроэнергии.
Задача и проблема – собрать это богатство.
Солнечная электроэнергия.
Для преобразования энергии Солнца в электроэнергию на сегодняшний день наиболее эффективными являются кремниевые фотоэлектрические батареи. Но их КПД низок и по факту не превышает 14%.
Таким образом, панель площадью 1,0 м 2 способна выдать на широте Москвы максимальную мощность порядка 0,11 КВт. И не верьте недобросовестным продавцам, завышающим показатели мощности!
Низкий КПД по большому счету ни о чем не говорит (ездим же мы на автомобилях, двигатели которых имеют КПД=10%). Ставь панель большей площади – и всё. Однако высокая стоимость полного комплекта солнечной электростанции (с панелями, аккумуляторами, автоматикой, преобразователями
1100 $/КВт) продолжает являться в России сдерживающим широкое распространение солнечных панелей фактором. Конечно, в местах, где другим способом получить электроэнергию невозможно или очень сложно и дорого (космос, кемпинг, дом лесника, не электрифицированный поселок), солнечная электростанция является хорошим решением проблемы.
К 2030 году прогнозируемая мощность всех солнечных фотоэлектрических преобразователей в мире превысит 200 ГВт. При этом стоимость произведенной электрической энергии предполагается 0,10…0,15 $/КВт*ч.
Солнечная тепловая энергия.
Очень популярной последние десятилетия стала тема получения тепловой энергии для горячего водоснабжения и отопления помещений от Солнца. Сотни компаний по всему миру предлагают свои разработки солнечных коллекторов, тысячи энтузиастов изготавливают разнообразные варианты устройств в домашних мастерских.
Одними из перспективных на сегодняшний день, возможно, видятся вакуумированные трубчатые коллекторы, у которых КПД достигает 90% (по заявлениям производителей и продавцов). Холодный воздух вентилятором забирается из помещения и по теплоизолированной трубе поступает в коллектор. Нагретый в результате теплообмена воздух возвращается по такой же трубе обратно в помещение. Солнечная энергия по очень простой и эффективной схеме преобразуется в тепловую! Установка не боится морозов, потому что замерзать в ней нечему.
Рассмотрим подробнее модель солнечного коллектора китайской компании ZN-ENERGY (www.pcmworld.com, подключисолнце.рф). Результаты практических испытаний любезно предоставил Алексей Пыкин из города Улан-Удэ.
Алексей установил наклонно с ориентацией на юг два коллектора марки ZN-20D58-1800 на крыше сарайчика, присоединил к ним подводящую и отводящую воздух трубы, включил в схему вентилятор, подключил прибор, записывающий температуры входящего в коллектор воздуха и выходящего и замерил скорость воздушного потока на выходе из отводящей трубы в помещение.
Габаритно-массовые параметры одного коллектора:
Высота – 2030 мм
Ширина – 1550 мм
Толщина – 180 мм
Оба коллектора собраны из 20 стеклянных вакуумных трубок длиной 1800 мм.
Между наружной трубкой Ø57 мм и первой внутренней трубкой Ø47 мм откачан воздух и создан вакуум для обеспечения высокого уровня теплоизоляции.
Поверхность трубки Ø47 мм имеет черное покрытие с очень большим коэффициентом поглощения (>0,9) солнечной энергии. Именно эта поверхность, разогреваясь под лучами Солнца, отдает всю полученную энергию внутрь трубки Ø47 мм, проходящему через нее воздуху и аккумулятору тепла – РСМ-цилиндру! Передаче тепла наружу в окружающее пространство препятствует вакуум.
РСМ-цилиндр – это еще одна внутренняя трубка с веществом, накапливающим и затем отдающим тепло за счет фазового перехода из одного агрегатного состояния в другое. По-простому — это «высокоэффективные камни в печке в бане».
Теоретическая мощность установки.
1. Эффективная площадь поверхности двух коллекторов марки ZN-20D58-1800
A =0,047*1,8*20*2=3,384 м 2
Те, кто считают площадь иначе, как поверхность полуцилиндра, или лукавят, или заблуждаются. В подтверждение своей правоты кроме здравого смысла в понимании процесса могу добавить, что известная компания Viessmann (Германия) площадь своих коллекторов на трубках считает по вышеприведенной формуле.
2. Максимальный заявляемый разработчиками коэффициент полезного действия коллекторов
КПД =0,9
3. Максимальная интенсивность потока в июне-июле в ясный полдень на широте г. Улан-Удэ
Ie =0,8 КВт/м 2
4. Максимальная мощность, которую могут развить два коллектора, установленные плоскостями перпендикулярно лучам Солнца
NΣтеор = Ie * A * КПД =0,8*3,384*0,9=2,436 КВт
5. Максимальная мощность, которую может развить одна трубка
Практическая мощность установки.
Выполним расчет в Excel мощности установки по исходным данным, присланным Алексеем.
О цветах ячеек листа Excel, применяемых в статьях этого блога, можно посмотреть на странице « О блоге ».
Расчет в Excel выполняется по следующим формулам:
7. V =π* D 2 /4* vср
8. G = V * ρ
9. N = G * c *( t2 — t1 )
11. Q = N * τ
12. mд = Q / qд
Выводы.
Установка Алексея в июньский солнечный полдень забирает из помещения воздух температурой 25 °С и, прогоняя его через два коллектора, выдает обратно в помещение нагретым до 138 °С!
Рассчитанная через количество нагретого воздуха мощность, достигаемая в этот момент времени – 2,307 КВт. Это 95% от рассчитанной теоретической мощности.
В нижней части таблицы можно определить количество тепловой энергии, которое выработает установка за заданное время, работая с вычисленной мощностью.
В самом низу таблицы я привел для справки расчет массы дров, которую необходимо сжечь для получения такого же количества энергии.
Для расчета суточного производства тепловой энергии следует проинтегрировать функцию мощности по времени.
Q =∫ N ( τ ) d τ
О том, как это делать рассказано в предыдущей статье на блоге.
Итоги.
В этой небольшой обзорной статье не ставилась цель подробно расписать все возможные варианты преобразования солнечной энергии в другие виды. Тем более не хотелось углубляться в разнообразие теплофизических аспектов и конструктивных решений конкретных моделей солнечных панелей и коллекторов. Совсем не был затронут вопрос углов установки панелей и коллекторов…
Главное, что хотелось донести:
1. Более 1,0 КВт мощности с панели или коллектора с рабочей площадью 1,0 м 2 не «снять»!
2. Более 0,14 КВт современная фотоэлектрическая батарея площадью 1,0 м 2 пока не вырабатывает!
3. Более 0,9 КВт солнечный коллектор с рабочей площадью 1,0 м 2 выдать сегодня не может и не сможет, наверное, никогда, если на Солнце что-нибудь не случиться! А если случится, то нам уже эта энергия не понадобится…
4. РСМ-цилиндры накапливают тепло, которое не смог забрать продуваемый воздух и отдают его воздуху в моменты закрытия Солнца облаками и перед закатом. Увеличить мощность РСМ-цилиндры не могут. Они, как ресиверы в системах сжатого воздуха, сглаживают колебания выходной мощности и не более того.
5. Если (с поправкой на оптимальный угол установки коллекторов) за год в г. Омске поступает от Солнца
1500 КВт*ч/м 2 , то установка из двух коллекторов, рассмотренная в примере, сможет выдать тепловой энергии около 4 300 КВт*ч.
В переводе на стоимость электроэнергии мы получим в год тепловой энергии на 14276 руб. Комплект коллекторов стоит около 120000 руб. Срок окупаемости более 8 лет…
В переводе на стоимость дров (1,50 руб./кг или 1000 руб./м 3 ) мы получим в год тепловой энергии на
3000 руб. (если принять КПД печи равным 50%). Срок окупаемости – 40 лет!
И это еще без учета затрат электроэнергии на вентилятор!
Не знаю, сколько прослужат коллектора, но жизненный опыт подсказывает, что град размером с куриное яйцо бывает у нас каждые 3…5 лет…
Однако, стоит отметить, что солнечная энергия – экологически чистый вид энергии. Расширяя ее применение, мы сохраняем нашу среду обитания. И стоит помнить, что расходуя всего 1 КВт*ч энергии, можно испечь 100 булок хлеба или выткать 10 м 2 ткани!
В заключении приведу несколько ссылок на качественные и просто интересные материалы по затронутой тематике:
Прошу УВАЖАЮЩИХ труд автора скачать файл ПОСЛЕ ПОДПИСКИ на анонсы статей.
Ссылка на скачивание файла: solnechnaya-energiya (xls 20,5KB).
Комментарии к статье, уважаемые читатели, пишите в блоке, расположенном ниже. Не стесняйтесь высказать свое мнение!
Источник