Меню

Центр вселенной это черная дыра

В центре Млечного пути может быть не черная дыра, а темная материя

Принято считать, что центре нашей галактики находится сверхмассивная черная дыра. Но мы не можем слетать к центру и проверить. Все выводы о Стрельце А* мы делаем по условиям вблизи центра и траекториям ближайших объектов.

Может ли центр Млечного пути быть чем-то другим?

Новое исследование показало, что орбиты объектов у галактического центра и скорости во внешних регионах галактики гораздо проще объяснить, если считать, что в центре галактики находится не черная дыра, а ядро из темной материи .

Сомнения породила звезда S2 . За её сильно вытянутой орбитой ученые наблюдают уже пару десятилетий. Полный оборот вокруг центра галактики звезда делает за 16 лет. В общем, она оказалась подходящим объектом для проверки общей теории относительности.

Два независимых исследования показали, что в этих экстремальных условиях вблизи центра галактики действительно выполняются законы общей теории относительности, и, более того, результаты позволяют предположить, что в центре Млечного пути находится сверхмассивная черная дыра массой около 4 миллионов солнечных.

А потом нашелся объект G2 .

Орбита G2 тоже оказалась вытянутой, но в самой её ближней к центру точке объект растягивался, а потом снова возвращался в нормальное состояние. Астрономы пока что не поняли, чем на самом деле является G2. Но главное, что это его растягивание не совсем вяжется с моделью черной дыры в центре галактики.

И вот в прошлом году ученые нашли необычное объяснение такому поведению. Оказалось, что движение S2 и G2 можно объяснить, если предположить, что в центре галактики находится плотное облако из фермионов темной материи . Чтобы эти “темные нейтрино” сжались в черную дыру, их должно быть как минимум в 100 раз больше, так что они вполне могут летать там в виде плотного облака.

Впрочем, S2 и G2 — это не единственные объекты вблизи галактического центра. Поэтому в этом году ученые расширили свою модель на 17 звезд (эти звезды называют S-звездами).

Как вы догадываетесь, эти звезды тоже отлично вписались в модель с “темными нейтрино”.

Темная материя — одна из самых важных на сегодняшний день загадок Вселенной. Этим термином мы называем “лишнюю массу”, которой не хватает для объяснения гравитационного взаимодействия космических объектов. Пока что нам не удалось ее никак засечь, мы делаем выводы лишь по ее гравитационному влиянию.

А ведь черные дыры мы тоже не видим и судим о них по гравитационному влиянию.

Авторы предполагают, что при достижении критической массы темная материя может сжаться в сверхмассивную черную дыру . Это позволило бы нам объяснить, как вообще появились сверхмассивные черные дыры, ведь мы не до конца понимаем, как им удается нарастить такую массу. Особенно, как они успевали это сделать в молодой Вселенной.

Посмотрим, что скажут другие астрономы. И опровержение, и подтверждение этого предположения о «темном ядре» сыграют большую роль в развитии науки.

Научная статья была принята к публикации в MNRAS Letters и выложена в открытый доступ на arXiv . arXiv:2105.06301 Источник: Science Alert .

Источник

Центр Млечного Пути — чёрная дыра или облако тёмной материи?

Исследование траекторий звёзд, вращающихся близко к центру Галактики (S- и G-объектов) позволило высказать предположение, что сверхмассивный объект Стрелец A* в центре Млечного Пути может быть не чёрной дырой, а распределённым в пространстве сгустком тёмной материи. Такую же природу могут иметь массивные объекты в центрах и других галактик.

S-звёзды вблизи центра Млечного Пути (снимки телескопа VLT в ближнем ИК-диапазоне).

Гравитационные силы в центре нашей Галактики в основном определяются некоторым компактным сверхмассивным объектом, который обозначают (Sagittarius A* или Sgr A*), с массой около 4 миллионов масс Солнца, или около 0,0005 процента массы всей Галактики. Астрофизики сегодня в целом сходятся в том, что это — сверхмассивная чёрная дыра в центре Млечного Пути, который на небесной сфере находится как раз в созвездии Стрельца. Строго говоря, Sgr A* — это обозначение не самой чёрной дыры, а того, что можно наблюдать — компактного радиоисточника в центре Галактики. Такие дыры расположены в центре большинства галактик. Недавно при помощи массива радиотелескопов удалось получить первое композитное изображение чёрной дыры в другой галактике (объекта M87* — центра эллиптической галактики M87 в созвездии Девы на расстоянии 53 миллионов световых лет). Нобелевская премия по физике 2020 года присуждена именно за открытие этого объекта в центре Млечного Пути, хоть в формулировке не используется термин «чёрная дыра», а говорится о «сверхмассивном объекте в центре нашей Галактики» (о Нобелевской премии в 2020 году в области астрофизики см. статью по ссылке).

Предполагаемая структура Млечного Пути: «звёздный» диск из двух компонентов (толстый и тонкий диск), ядро (балдж), шаровые звёздные скопления и гало тёмной материи.

О свойствах таких фантомных объектов, как чёрная дыра или тёмная материя мы в основном можем судить по их гравитационному взаимодействию с окружением. Основная разница заключается в том, что «чёрная дыра» — объект точечный по сравнению с расстоянием до ближайших гравитационно связанных с ним небесных тел. Это относится как к «чёрным дырам звёздной массы», так и к сверхмассивным дырам в центрах галактик. Напротив, «сгусток тёмной материи» предполагает протяжённый объект с неоднородным распределением массы — некоторое невидимое, но массивное облако, которое влияет на движущиеся вблизи и внутри него объекты. Необходимость введения тёмной материи возникла из наблюдения за траекториями звёзд в галактике, в том числе в Млечном Пути. Масса галактики, которую можно оценить по видимой материи, то есть плотности звёзд в различных её частях, оказывается сильно недостаточной для объяснения вращения звёзд вокруг галактического центра (про определение массы Млечного Пути с учётом тёмной материи см. другую статью). Если бы «гало» из тёмной материи имело везде в Галактике однородную плотность, о нём говорить вообще не имело бы смысла — оно бы никак не проявляло себя гравитационно. Во всех работах, где говорят о тёмной материи и её влиянии на движение звёзд в галактике, рассматривают различные модельные распределения массы в таком гало. Обычно молчаливо предполагается, что наибольшая плотность такого облака примерно там, где и центр галактики. В остальном распределение плотности тёмного вещества подбирают исходя из разумных допущений с тем, чтобы объяснить кривые скорости звёзд (зависимость скорости звезды от её расстояния до центра галактики). Сейчас в ходу несколько распространённых «подгоночных» профилей для (примеры можно посмотреть в Википедии), они с переменным успехом используются для объяснения различных динамических процессов в Галактике.

Композитный снимок в псевдоцветах показывает разное распределение звёздного вещества (оранжевый), горячего газа (зелёный) и массы в виде тёмной материи (синий цвет) при столкновении нескольких галактик (галактическое скопление Abell 520).

За несколько последних лет в концепции природы Sgr A* как «точечной» чёрной дыры очень большой массы стали появляться нестыковки, связанные с точными наблюдением орбит некоторых ближайших к нему объектов. На таком расстоянии оптически разрешить обычные звёзды, и тем более отследить их траектории сложно, и природа этих объектов до конца неясна. Некоторые из них больше похожи на звёзды, а некоторые имеют черты и звезды, и протяжённого газового облака; соответственно их принято называть и . Вероятно, материал «звёзд» типа G при прохождении по орбите слишком близко от Sgr A* растягивается приливными силами в длинный хвост, как у кометы, но на больших расстояниях снова ведёт себя как звезда. Подробнее про наблюдения за объектами G-типа в центре Галактики есть отдельная статья.

Читайте также:  Как правильно сделать посыл во вселенную

Рассчитанные орбиты 17 S-звёзд вокруг галактического центра (объекта Sgr A*).

Наблюдая за траекториями некоторых из S- и G-объектов, исследователи заметили, что их «гравитационное растяжение» при прохождении вблизи Sgr A* не вполне укладывается в схему с чёрной дырой. Наибольший интерес здесь вызывают два ближайшие к центру Галактики объекта этих типов — S2 и G2. Так, после прохождения перицентра (ближайшей точки орбиты) объект G2, по некоторым расчётам, не мог бы выжить как единое целое и должен был разорваться или поглотиться чёрной дырой. Это должно было произойти на наших глазах в 2013 или 2014 году; вероятно, астрономы с удовольствием готовились к такому необычному зрелищу. Однако G2 после прохождения перицентра сохранился, и его кинематика поставила предполагаемые параметры чёрной дыры в центре Галактики под вопрос. Аналогичные странности находили и в поведении S-объекта S2.

Наблюдаемые траектории оказалось возможным воспроизвести более точно, если вместо чёрной дыры в качестве притягивающей массы расположить распределённый объект, состоящий из компактного массивного ядра и протяжённого размытого гало. Такие модели устройства «невидимой массы» в Галактике сосуществуют наряду с гипотезой о чёрной дыре. Как известно из законов тяготения, перераспределение массы центрального объекта никак не может повлиять на движение небесных тел на больших расстояниях. Любое тело с центрально-симметричным распределением вещества притягивает объекты с такой же силой, как такая же масса, сосредоточенная в его центре. Поэтому за пределами центрального звёздного кластера на расстоянии около 0,1 парсека от Sgr A* замена чёрной дыры на сгусток тёмной материи не будет иметь последствий — достаточно подобрать облако с такой же суммарной массой. Но для траекторий близких объектов различия могут быть ощутимыми. Оказалось, что надлежащим образом подобранная модель «распределённой» тёмной массы лучше описывает поведение «звезды» G2 и наблюдаемые траектории 17 ближних S-звёзд, которые удалось определить с наиболее высокой точностью. В мае 2021 года в MNRAS (Monthly Notices of the Royal Astronomical Society) вышла статья группы астрофизиков на базе ICRA (Международного центра релятивистской астрофизики в Италии), в которой продолжается исследование этой альтернативной гипотезы строения центра Галактики.

В основе этого варианта модели лежит фермионная тёмная материя, которая состоит из некоторых гипотетических частиц — авторы предлагают называть их даркино. Такую модель недавно предложили исходя из уравнений общей теории относительности и термодинамики фермионного газа (частиц, подчиняющихся статистике Ферми—Дирака — к ним, например, относятся электроны). На расстояниях, сопоставимых с размерами ядра галактики и больше, модель ведёт себя подобно множеству аналогичных выражений для плотности гало из тёмной материи и удовлетворительно объясняет кривые скорости звёзд в Галактике. Но в центре такого сгустка, в его компактной части (внутри орбиты самого ближнего объекта S2) «газ» вырожден и в игру вступают законы квантовой физики. Если плотность частиц тёмной материи превышает критическое значение, может произойти гравитационный коллапс фермионного газа с образованием уже знакомой галактической сверхмассивной чёрной дыры. Такой механизм может реализоваться не только в Млечном Пути, но и в других галактиках.

Центр Млечного Пути на звёздном небе. L. Landolfi.

Источник

Сверхмассивная Черная Дыра в Центре нашей галактики. Стрелец А — Сердце Тьмы

Мы живем на задворках нашего мегаполиса под названием Млечный путь, так сказать в «спальном районе». Возможно именно это помогло Жизни сохранится на нашей планете. Примерно на расстоянии 26 тысяч световых лет от нас, находится » Центр Мегаполиса» в котором происходит вся «движуха».Если бы Мы оказались в центре галактики , мы бы увидели много газа и пыли, плотность скопления звезд просто огромна. Жить в этом районе невозможно, здесь повсюду сильное ультрафиолетовое и рентгеновское излучение.

И в центре всего этого Хаоса , СВЕРХМАССИВНАЯ ЧЕРНАЯ ДЫРА -СТРЕЛЕЦ А. Ученые представляют их чудовищами которые пожирают материю вокруг себя. Но именно благодаря ЕЙ мы обязаны своим существованием. Не будь Стрельца А , не было бы и нашего дома Солнечной системы. А следовательно не было бы и нас.

Наша звездная система находится в газовом облаке, которое раскинулось на 300 световых лет. Но ученым не известно наше точное местоположение в галактике Млечный Путь.Все что знают ученые, что мы находимся между двух рукавов спирали. Не слишком далеко от края, и не слишком близко к центру. Так называемая зона » ЗЛАТОВЛАСКИ » только в галактическом масштабе. Все потому что у нас нет возможности посмотреть на галактику со стороны. В галактических масштабах GPS не поможет.

Как бы странно это не казалось, но сила тяготения в Сверхмассивных черных дырах такова, что вы можете упасть в нее и выжить.Правда всего лишь на миг.Перешагнув «горизонт событий» вы даже не почувствуете этого, так как размеры вашего тела ничтожно малы по сравнению с черной дырой. Согласно вычислению Эйнштейна, продвигаясь по направлению к центру черной дыры, вы упретесь во внутренний «горизонт» состоящий из попавших в ловушку света и энергии.здесь вы увидите вспышку яркого света , который будет по всюду. Именно он и разложит Вас на атомы. Произойдет это настолько быстро что вы даже не успеете сообразить.

Человек пока очень мало знает о черных дырах, мы можем только предполагать что за процессы происходят внутри этого монстра. Астрономы выяснили что во всех крупных галактиках имеется в центре Сверхмассивная черная дыра. Как они образовались? В двух словах, после Большого Взрыва появились первые Сверхмассивные звезды. Жизнь этих звезд была коротка, после смерти они образовывали первые черные дыры. Которые в свою очередь начинали образовывать галактики, которые потом сталкивались и черные дыры сливались, постепенно становясь все массивней. Пройдет время и человек все также будет пытаться понять как устроена Вселенная, и ее загадки будут будоражить мысли ученых.

ДРУГИЕ МОИ СТАТЬИ, ВОЗМОЖНО ВАМ БУДУТ ИНТЕРЕСНЫ

Источник

Черная дыра – что это, как выглядит, описание, строение, характеристики, фото и видео

Черная дыра – удивительное явление, встречающееся во Вселенной. Оно представляет большой интерес для ученых, однако в процессе его изучения они сталкиваются со многими трудностями. Тем не менее, современные технологии позволяют не только построить теории об устройстве черных дыр, но и проверить их на практике. Более того, в 2019-ом году ученым даже удалось сделать первую в мире фотографию, на которой изображен данный космический объект.

Что такое черная дыра?

Это может показаться странным, но черные дыры являются самыми простыми объектами во Вселенной в плане характеристик. У них есть лишь два параметра: скорость вращения и масса. В астрофизике считается, что они являются финальным этапом эволюции звезд. Когда жизненный цикл светила подходит к концу, оно взрывается, а его центр превращается в черную дыру.

Поверхность новообразованного небесного тела называется горизонтом событий. Но нужно понимать, что у черной дыры отсутствует физическая оболочка. Под данным термином подразумевается лишь пространство на определенном расстоянии от центра, где заканчивается действие силы притяжения. Когда объект или свет пересекает горизонт событий, он уже не может выбраться из черной дыры, поскольку оказывается в сильном гравитационном поле.

Читайте также:  Что означает центр вселенной

Почему черные дыры так называются?

Изначально данные космические объекты назывались коллапсарами. Однако в XX веке журналисты научных изданий начали использовать словосочетание “черная дыра”. Оно так сильно понравилось физику Джону Уиллеру, что он вывел его на уровень официального обозначения.

Черные дыры получили такое название, поскольку полностью поглощают свет, из-за чего их нельзя увидеть. Разглядеть объект можно лишь в том случае, если вокруг горизонта событий находится оболочка из определенного вещества, например, газа. Также черная дыра хорошо заметна, если она впитывает вещество и энергию из расположенной рядом звезды. В противном случае обнаружить ее не удасться, поскольку она будет невидима для человеческого глаза и приборов.

Черная дыра вокруг звездного скопления

Хоть данные объекты и поглощают свет полностью, никак его не отражая, есть гипотеза, что они могут обладать излучением. Во время своего существования черная дыра способна испускать в пространство разные простейшие частицы, большую часть которых составляют фотоны. С физической точки зрения этот процесс напоминает постепенное испарение. На данный момент это явление не доказано, и существует лишь гипотетическая модель. Ученые называют его излучением Хокинга.

Видимыми черные дыры становятся, когда сталкиваются друг с другом. От них в пространство начинают исходить заметные гравитационные волны.

Как появляются черные дыры?

Появление черных дыр напрямую зависит от их массы. По этому параметру они разделяются на две категории: околосолнечные – их вес равен нескольким Солнцам, и массивные – у них данный параметр в миллионы раз больше.

Как черные дыры участвуют в формировании космоса

Исследования показывают, что околосолнечные черные дыры имеют большой возраст и скорее всего появились на ранних этапах формирования Вселенной. Они образовались в результате сжатия звезд, размеры которых в 25-70 раз превышают габариты Солнца. Когда светило прекращало уменьшаться, оно взрывалось, а его центр превращался в черную дыру.

Массивные объекты в большинстве случаев образуются из гигантских газовых облаков. Массы последних как раз хватает, чтобы сформировалась черная дыра больших размеров, которая весит в миллионы раз больше Солнца. На территории Млечного Пути существует одна из таких под названием Стрелец А*. Она находится в 26 тысячах световых лет от Солнечной системы. Эта черная дыра появилась примерно в то же время, что и галактика, и располагается в ее центре. Основным материалом для нее послужило газовое облако, которое сжалось до малых размеров. Также есть версия, что черная дыра в Млечном Пути появилась после взрыва звезды гигантских размеров.

На протяжении своего существования оба вида объектов притягивают из пространства вещества, которые пересекают их горизонт событий. Из-за этого габариты черной дыры постепенно увеличиваются. Более того, если поглощение происходит лишь с одной стороны, она начинает вращаться в определенную сторону.

Какой формы черная дыра?

Все черные дыры вращаются вокруг своей оси. И от скорости напрямую зависит их внешний вид. Если движение происходит медленно, то форма объекта будет сферической. Но когда черная дыра вращается с большой скоростью, ее полюса сплющиваются, из-за чего она становится овальной.

Черные дыры бывают круглыми или овальными

На данный момент современных технологий хватает на то, чтобы определить форму объекта. Но ученым до сих пор не удается узнать, что находится в центре черной дыры. Известно, что там не действуют физические законы, а кривизна пространства стремится к бесконечности. Пока самым распространенным мнением считается, что внутри черной дыры находится сингулярность.

Структура и физика черных дыр

Любая черная дыра имеет два основных элемента. Горизонт событий – границу, при пересечении которой объект гарантированно окажется в гравитационном поле, и сингулярность. Последняя наполняет внутреннюю область. Ученые до сих пор не могут определить, что именно находится в ней. Известно, что внутри искажается время и пространство, не действуют законы физики.

Когда черная дыра вращается, вокруг горизонта событий появляется эргосфера. Находящиеся в этой области объекты также движутся в этом направлении. Однако притяжение действует недостаточно сильно, чтобы затягивать их в сингулярность. Соответственно, объекты могут покинуть эргосферу.

Виды черных дыр

Изучение Вселенной позволило ученым выявить четыре вида черных дыр, обладающих определенными особенностями.

Черные дыры звездных масс

Этот вид черных дыр появляется после выгорания топлива в звезде. Когда термоядерная реакция внутри светила прекращается, оно начинает остывать и сжиматься из-за сильной гравитации. Если на определенном этапе процесс остановится, то объект превратится в нейтронную звезду. Но если он продолжится, то в конечном итоге из-за гравитационного коллапса светило станет черной дырой.

Сверхмассивные черные дыры

Представители данного класса обладают гигантскими размерами и большой массой. Не так давно американские ученые доказали, что данные объекты обладают гораздо большим весом, чем считалось ранее. Например, по предварительным оценкам, масса черной дыры, расположенной в центре галактики М87, равнялась трем миллиардам солнечных. Но более детальные исследования показали, что этот параметр значительно выше. Для того, чтобы черная дыра способствовала вращению звезд в галактике, она должна весить 6,5 млрд солнечных масс.

Сверхмассивные черные дыры могут появляться как из звезд, так и из газовых облаков. При этом они поглощают большое количество материала из пространства, продолжая наращивать вес и габариты.

Первичные черные дыры

Существование первичных черных дыр во Вселенной пока не доказано. Считается, что если на ранних этапах формирования космоса в гравитационных полях возникали колебания и появлялись сильные отклонения в их однородности, это могло способствовать образованию подобных объектов. Если первичные черные дыры существуют, то они обладают небольшой массой, которая может быть даже меньше, чем у Солнца.

Квантовые черные дыры

Квантовые черные дыры должны образовываться в результате ядерных реакций, в которых задействовано большое количество энергии, равное 10^26 эВ и более. Однако на данный момент человечество не способно преодолеть данный порог, поэтому этот тип объектов имеет лишь теоретическое существование.

Считается, что получить квантовую черную дыру можно в результате столкновения протонов. И если во время процесса выделится много энергии, его результатом станет появление простейшей частицы – максимона. Ее и можно будет считать квантовой черной дырой. Радиус объекта будет примерно 10^-35 м, а масса 10^-5 г, что делает максимон самой тяжелой элементарной частицей.

Сколько черных дыр в нашей галактике?

Обнаружение черных дыр – довольно сложный процесс, требующий долгого наблюдения за космосом и сбора множества данных. Более того, многие подобные объекты остаются незаметными до тех пор, пока не начнут поглощать вещество, находящееся в близлежащем пространстве.

На территории Млечного Пути обнаружено в районе десяти черных дыр, за которыми регулярно ведется наблюдение. Однако внутри галактики могут существовать миллионы подобных небесных тел, причем среди них будут встречаться как небольшие, так и сверхмассивные.

В 2005-ом году была обнаружена неоднородная область, которая постепенно перемещается вокруг центра галактики. Полученные данные указывают на то, что в этом участке Млечного Пути может находиться до 20-ти тысяч черных дыр.

Читайте также:  Закон хаббла подтверждает теорию пульсирующей вселенной

Несколько лет назад японские астрономы открыли объект, расположенный возле Стрельца А*. Его масса равна 100 тыс. солнечным, а диаметр составляет 0,3 световых года. Он также может являться черной дырой.

Самая большая черная дыра

Самая крупная черная дыра, известная человечеству, носит название FSRQ блазар, находится в галактике S5 0014+81 и выполняет роль ее ядра. Объект отдален от Солнечной системы на 12 млрд световых лет.

Вес небесного тела составляет 40 млрд солнечных масс, а диаметр примерно 0,026 световых лет. Возраст FSRQ блазар равен примерно 12 млрд лет. Это означает, что она появилась всего лишь спустя полтора миллиарда лет с момента появления Вселенной.

Изучив небесное тело, ученые пришли к выводу, что его ресурсов хватит для того, чтобы просуществовать до эпохи черных дыр и стать одним из последних объектов в космосе. Под данной эпохой подразумевается один из сценариев развития будущего Вселенной, когда практически все звезды галактик погаснут, и большинство из них превратится в черные дыры.

Зачем изучают черные дыры, и сколько их открыто?

Ученые занимаются изучением черных дыр, поскольку множество свойств Вселенной связано с этими объектами. Они служат центрами галактик и способствуют их вращению. Столкновение черных дыр образует гравитационные волны. Отдельный интерес представляет пространство внутри, которое не подчиняется законам физики. Изучение черных дыр позволяет лучше понять принципы устройства космоса.

На данный момент астрономами обнаружено и изучено в районе десяти дыр. Также ведется наблюдение за большим количеством объектов, которые обладают похожими свойствами. Но имеющейся информации недостаточно, чтобы доказать их принадлежность к классу черных дыр.

Что будет, если попасть в черную дыру?

Если человек окажется в черной дыре, то ничего хорошего с ним явно не случится. Когда любой объект проходит через горизонт событий, он оказывается под влиянием сильного гравитационного поля. Из-за этого с одной стороны его начинает сильно растягивать, а с другой – сплющивать. Данный процесс будет продолжаться до тех пор, пока предмет не разделится на атомы и не сольется с сингулярностью.

Изображение космонавта, затягиваемого в черную дыру

Могут ли черные дыры столкнуться друг с другом?

Черные дыры могут столкнуться, но для этого требуется, чтобы они оказались на небольшом расстоянии друг от друга. Чаще всего данный процесс можно наблюдать после угасания двойной звезды. Когда оба светила, расположенных на небольшом расстоянии, превращаются в черные дыры, последние начинают сближение и сталкиваются.

Также это явление возможно при слиянии галактик. Во время этого процесса две дыры из разных звездных скоплений могут оказаться рядом и столкнуться. Но такое явление происходит редко, примерно раз в несколько миллиардов лет.

Когда черные дыры сталкиваются друг с другом, начинается процесс слияния, который длится несколько десятков лет. Во время него объекты становятся единым целым, сингулярность внутри них также смешивается. Фактически, после столкновения черных дыр получается одна, но обладающая гораздо большими размерами.

Белые дыры

Белая дыра является полной противоположностью черной. Ее главная особенность заключается в том, что за ее горизонт событий невозможно проникнуть. Белые дыры также принято называть “безмассовыми сингулярностями”, поскольку внутри них отсутствует материя, а сами они ничего не весят.

Впервые о данных объектах заговорили в 1970-х годах, и с тех пор астрофизики не оставляют надежд найти хотя бы один в космическом пространстве. На данный момент ученые еще ни разу не наблюдали белые дыры, поэтому их существование обусловлено лишь теоретическими данными.

Если черные поглощают свет и не дают ему выбраться за горизонт событий, то белые наоборот, выбрасывают его в пространство с такой силой, что сквозь излучение невозможно прорваться и оказаться внутри. Если такой объект существует в реальности, то он обладает большой яркостью, во много раз превышающей тот же параметр у звезд.

Также есть несколько причин, указывающих на невозможность существования белых дыр. Во-первых, на протяжении своей “жизни” этот объект должен из сингулярности постепенно формироваться в звезду. Получается, он будет испускать в пространство большое количество энергии, но при этом, также и накапливать ее. Это то же самое, если бы горячий объект нагревал пространство вокруг, но и сам сохранял температуру без посторонней помощи. На данный момент такой процесс считается невозможным. Во-вторых, сингулярность внутри белой дыры должна образоваться самостоятельно, а не появиться в результате угасания звезды. Ее спонтанное формирование также считается маловероятным.

Но во вселенной встречаются и намеки на существование белых дыр. К числу таких можно отнести гамма-всплеск. Это явление, во время которого в пространство излучается большое количество энергии.

Как исчезают черные дыры

На данный момент ученые еще ни разу не наблюдали процесс исчезновения черной дыры, поэтому неизвестно, если ли у данного объекта срок существования. Стивен Хокинг выдвинул теорию, в которой попытался объяснить, как может проходить это явление. Оно получило название “испарение черной дыры”.

Суть теории Хокинга строится на появлении виртуальных частиц. Это попарные микроскопические объекты, которые регулярно появляются в вакууме. И если виртуальные частицы образуются на границе горизонта событий, то они разорвутся. Одна полетит к центру черной дыры, а вторая – в сторону от нее. При этом, первая частица будет обладать отрицательной энергией. Это означает, что черная дыра потеряет количество массы, равное ее весу.

И если такая “бомбардировка” будет продолжаться регулярно, то постепенно небесное тело полностью утратит массу и исчезнет. Но данный процесс займет много времени. Однако у данной теории есть противники, поскольку если черная дыра теряет массу при поглощении объекта, утрата должна компенсироваться весом попавшего внутрь вещества.

Почему черная дыра не засасывает галактику

Черные дыры, расположенные в центре галактики, постепенно поглощают находящееся вокруг вещество и увеличивают свой объем. Но еще не зарегистрировано ни одного случая, чтобы хотя бы один объект данного типа полностью засосал внутрь себя целое звездное скопление.

Полное поглощение галактики не происходит из-за закона всемирного тяготения и ряда других причин. Черная дыра обладает гравитационным притяжением, но чем дальше от нее находится объект, тем слабее он ощущает на себе его влияние. Также все небесные тела, расположенные в галактике, вращаются по кругу, что замедляет процесс поглощения. Фактически, в этой ситуации черная дыра выступает в роли Солнца, а галактика – это планеты, которые вращаются вокруг него, но на определенном расстоянии.

Если теория “испарения” верна, то она также может объяснить, почему черная дыра не засасывает все вокруг. Впитав достаточно вещества и энергии, она должна такое же количество выбрасывать в пространство. Соответственно, появляется баланс, при котором поглощение прекращается. Некоторые вещества вблизи черной дыры по-прежнему могут затягиваться внутрь, но большая часть галактики не будет ощущать на себе влияние гравитации.

Почему черная дыра не излучает свет

Черные дыры обладают настолько большими массой и гравитацией, что пространство и время внутри них искривляются. Из-за этого ни один объект, пересекший горизонт событий, не способен выбраться наружу, в том числе и свет. Поэтому у черных дыр отсутствует какое-либо излучение.

Интересное видео о черных дырах

Если Вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Источник

Adblock
detector