Угловой диаметр солнца формула астрономия
Работа N 7. Определение угловых и линейных размеров Солнца (или Луны)
I. С помощью теодолита.
1. Установив прибор и вставив светофильтр в окуляр трубы, совместить нуль алидады с нулем горизонтального лимба. Закрепить алидаду и при открепленном лимбе навести трубу на Солнце так, чтобы вертикальная нить касалась правого края диска Солнца (это достигается с помощью микрометрического винта лимба). Затем быстрым вращением микрометрического винта алидады перевести вертикальную нить на левый край изображения Солнца. Сняв показания с горизонтального лимба, и получают угловой диаметр Солнца.
2. Вычислить радиус Солнца по формуле:
R = D ∙ sin r
где r — угловой радиус Солнца, D — расстояние до Солнца.
3. Для вычисления линейных размеров Солнца можно воспользоваться и другой формулой. Известно, что радиусы Солнца и Земли связаны с расстоянием до Солнца соотношением:
R = D ∙ sin r ,
R0 = D ∙ sin p,
где r — угловой радиус Солнца, а p — его параллакс.
Поделив почленно эти равенства, получим:
Ввиду малости углов, отношение синусов можно заменить отношением аргументов.
Тогда
Значения параллакса р и радиуса Земли берутся из таблиц.
R0= 6378 км, | |
r = 16′ | |
p = 8″,8 |
Отношение , т.е. радиус Солнца в 109 раз больше радиуса Земли.
Аналогично определяются и размеры Луны.
II. По времени прохождения диска светила через вертикальную нить оптической трубы
Если смотреть на Солнце (или Луну) в неподвижный телескоп, то вследствие суточного вращения Земли светило будет постоянно уходить из поля зрения телескопа. Для определения углового диаметра Солнца, с помощью секундомера измеряют время прохождения его диска через вертикальную нить окуляра и найденное время умножают на cos d , где d — склонение светила 1 . Затем время переводят в угловые единицы, помня, что за 1 мин Земля поворачивается на 15′, а за 1 сек. — на 15″. Линейный диаметр D определяется из соотношения:
где R — расстояние до светила, a — его угловой диаметр, выраженный в градусах.
Если использовать угловой диаметр, выраженный в единицах времени (например, в секундах), то
где t — время прохождения диска через вертикальную нить, выраженное в секундах.
Дата наблюдения — 28 октября 1959 г.
Время прохождения диска через нить окуляра t = 131 сек.
Склонение Солнца на 28 октября d = — 13њ.
Угловой диаметр Солнца a = 131∙ cos 13њ = 131∙0,9744 = 128 сек. или в угловых единицах a = 32 = 0,533њ.
Линейный диаметр Солнца |
1. Из двух способов второй более доступен. Он проще по технике выполнения и не требует какой-либо предварительной тренировки.
2. Проводя такие измерения, интересно отметить разницу в величине видимого диаметра Солнца, когда оно бывает в перигее и апогее. Разница эта составляет около 1′ или по времени — 4 сек.
В значительно больших пределах изменяется видимый диаметр Луны (от 33′,4 до 29′,4). Это хорошо видно из рис. 55. Здесь уже разница во времени — около 16 сек.
Рис. 55. Наибольший и наименьший видимые размеры диска Луны, расположенные концентрически (слева) эксцентрически (справа).
Такие наблюдения будут воочию убеждать учащихся в том, что орбиты Земли и Луны не круговые, а эллиптические (иллюстрация к законам Кеплера).
3. Пользуясь вторым способом, можно определять размеры некоторых лунных образований, длину теней от гор и др.
Источник
Определение размеров светил
Зная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:
Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30′, а все планеты видны невооруженным глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ. Тогда:
Если расстояние D известно, то
где величина р выражена в радианах.
Пример решения задачи
Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30′?
1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?
1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8″ и 57′ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?
Источник
Угловой диаметр
Угловой размер — это угол между линиями, соединяющими диаметрально противоположные точки измеряемого объекта и глаз наблюдателя.
Под угловым размером может также пониматься не плоский угол, под которым виден объект, а телесный угол.
Если отрезок длиной D перпендикулярен линии наблюдения (более того, она является серединным его перпендикуляром) и находится на расстоянии L от наблюдателя, то точная формула для углового размера этого отрезка: . Если размер тела D мал по сравнению с расстоянием от наблюдателя L, то угловой размер (в радианах) определяется отношением D/L, так как
для малых углов. При удалении тела от наблюдателя (увеличении L), угловой размер тела уменьшается.
Понятие углового размера очень важно в геометрической оптике, и в особенности применительно к органу зрения — глазу. Глаз способен регистрировать именно угловой размер объекта. Его реальный, линейный размер определяется мозгом по оценке расстояния до объекта и из сравнения с другими, уже известными телами.
В астрономии
Угловой размер астрономического объекта, видимый с Земли, обычно называется угловым диаметром или видимым диаметром. Вследствие удалённости всех объектов, угловые диаметры планет и звёзд очень малы и измеряются в угловых минутах (′) и секундах(″). Например, средний видимый диаметр Луны равен 31′05″ (вследствие эллиптичности лунной орбиты угловой размер изменяется от 29′24″ до 33′40″). Средний видимый диаметр Солнца — 31′59″ (изменяется от 31′27″ до 32′31″). Видимые диаметры звёзд чрезвычайно малы и лишь у немногих светил достигают нескольких сотых долей секунды.
См. также
Wikimedia Foundation . 2010 .
Смотреть что такое «Угловой диаметр» в других словарях:
УГЛОВОЙ ДИАМЕТР — УГЛОВОЙ ДИАМЕТР, в астрономии видимый диаметр небесного тела, выраженный в угловых мерах (обычно в дуговых градусах и минутах). Это угол, вершиной которого является глаз наблюдателя, а основанием видимый диаметр наблюдаемого тела. Если известно… … Научно-технический энциклопедический словарь
угловой диаметр — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN angular diameter … Справочник технического переводчика
Угловой диаметр — Видимый диаметр объекта, измеряемый в угловых единицах, т.е. в радианах, градусах, дуговых минутах или секундах. Угловой диаметр зависит как от истинного диаметра, так и от расстояния до объекта … Астрономический словарь
угловой диаметр — kampinis skersmuo statusas T sritis fizika atitikmenys: angl. angular diameter; apparent diameter vok. scheinbare Durchmesser, m; Winkeldurchmesser, m rus. видимый диаметр, m; угловой диаметр, m pranc. diamètre angulaire, m; diamètre apparent, m … Fizikos terminų žodynas
угловой диаметр приемника — (η2) Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика
угловой диаметр светоотражающего образца — (η1) Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (β1 = β2 = 0°). [ГОСТ Р 41.104 2002] Тематики автотранспортная техника … Справочник технического переводчика
угловой диаметр приемника (η2) — 2.4.3 угловой диаметр приемника (η2): Угол, под которым наблюдается наибольший размер видимой площади приемника из исходного центра (b1 = b2 = 0°). Источник … Словарь-справочник терминов нормативно-технической документации
угловой диаметр светоотражающего образца (η1) — 2.4.2 угловой диаметр светоотражающего образца (η1): Угол, под которым наблюдается наибольший размер видимой площади светоотражающего образца либо из центра источника света, либо из центра приемника (b1 = b2 = 0°). Источник … Словарь-справочник терминов нормативно-технической документации
Диаметр — в изначальном значении это отрезок, соединяющий две точки на окружности и проходящий через центр окружности, а также длина этого отрезка. Диаметр равен двум радиусам. Содержание 1 Диаметр геометрических фигур … Википедия
Диаметр Солнца и планет — поперечник видимого диска этих светил, выраженный в угловой мере. Зная видимый диаметр и расстояние от Земли, легко вычислить истинные размеры светил. Угловой диаметр изменяется в зависимости от расстояния, и так как все движения светил относятся … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Источник
Угловой размер, линейный размер и расстояние
Калькуляторы рассчитвающие параметры по соотношениям между угловым размером тела, линейным размером тела и расстоянием до тела.
Угловой размер — это угол между линиями, соединяющими диаметрально противоположные точки измеряемого объекта и глаз наблюдателя.
Посмотрим на рисунок: здесь отрезок D — измеряемый объект, отрезок L — линия наблюдения, перпендикулярная отрезку D и являющаяся его серединным перпендикуляром, и угол а — угловой размер отрезка D.
Очевидные соотношения между величинами (вспомним тригонометрию):
Таким образом, наблюдатель, зная, например, линейный размер объекта, по угловому размеру объекта может определить расстояние до него. Помню, раньше для этих целей военные бинокли снабжали специальными риcками для определения углового размера.
Ну и обратные задачи тоже имеют место — зная, например, расстояние и линейный размер объекта, можно определить его угловой размер; и наконец, зная расстояние и угловой размер, можно определить линейный размер. Последние задачи актуальны для астрономии. Там используют термин угловой диаметр — то есть видимый диаметр небесного тела, выраженный в угловых мерах.
Ниже калькуляторы, рассчитывающие неизвестные по всем соотношениям. В качестве данных по умолчанию используется расстояние от Земли до Солнца, диаметр Солнца и средний угловой диаметр Солнца, наблюдаемого с Земли.
Источник
Угловой диаметр солнца формула астрономия
§ 13. О пределение расстояний и размеров тел в С олнечной системе
1. Форма и размеры Земли
П редставление о Земле как о шаре, который свободно, без всякой опоры находится в космическом пространстве, является одним из величайших достижений науки древнего мира.
Считается, что первое достаточно точное определение размеров Земли провёл греческий учёный Эратосфен (276—194 до н. э.), живший в Египте. Идея, положенная в основу измерений Эратосфена, весьма проста: измерить длину дуги земного меридиана в линейных единицах и определить, какую часть полной окружности эта дуга составляет. Получив эти данные, можно вычислить длину дуги в 1 ° , а затем длину окружности и величину её радиуса, т. е. радиуса земного шара. Очевидно, что длина дуги меридиана в градусной мере равна разности географических широт двух пунктов: ϕ B – ϕ A .
Рис. 3.8. Способ Эратосфена
Для того чтобы определить эту разность, Эратосфен сравнил полуденную высоту Солнца в один и тот же день в двух городах, находящихся на одном меридиане. Измерив высоту Солнца h B (рис. 3.8) в полдень 22 июня в Александрии, где он жил, Эратосфен установил, что Солнце отстоит от зенита на 7,2 ° . В этот день в полдень в городе Сиена (ныне Асуан) Солнце освещает дно самых глубоких колодцев, т. е. находится в зените ( h A = 90 ° ). Следовательно, длина дуги составляет 7,2 ° . Расстояние между Сиеной ( A ) и Александрией ( B ) около 5000 греческих стадий — l .
Стадией в Древней Греции считалось расстояние, которое проходит легко вооружённый греческий воин за тот промежуток времени, в течение которого Солнце, коснувшееся горизонта своим нижним краем, целиком скроется за горизонт.
Несмотря на кажущееся неудобство такой единицы и достаточную громоздкость словесного определения, её введение выглядело вполне оправданным, учитывая, что строгая периодичность небесных явлений позволяла использовать их движение для счёта времени.
Обозначив длину окружности земного шара через L , получим такое выражение:
=
,
откуда следует, что длина окружности земного шара равняется 250 тыс. стадий.
Точная величина стадии в современных единицах неизвестна, но, зная, что расстояние между Александрией и Асуаном составляет 800 км, можно полагать, что 1 стадия = 160 м. Результат, полученный Эратосфеном, практически не отличается от современных данных, согласно которым длина окружности Земли составляет 40 тыс. км.
Эратосфен ввёл в практику использование терминов «широта» и «долгота». Видимо, появление этих терминов связано с особенностями формы карт того времени: они повторяли по очертаниям побережье Средиземного моря, которое длиннее по направлению запад—восток (по долготе), чем с севера на юг (по широте).
Рис. 3.9. Параллактическое смещение
Определить географическую широту двух пунктов оказывается гораздо проще, чем измерить расстояние между ними. Зачастую непосредственное измерение кратчайшего расстояния между этими пунктами оказывается невозможным из-за различных естественных препятствий (гор, рек и т. п.). Поэтому применяется способ, основанный на явлении параллактического смещения и предусматривающий вычисление расстояния на основе измерений длины одной из сторон (базиса — BC ) и двух углов B и C в треугольнике ABC (рис. 3.9).
Параллактическим смещением называется изменение направления на предмет при перемещении наблюдателя.
Чем дальше расположен предмет, тем меньше его параллактическое смещение, и чем больше перемещение наблюдателя (базис измерения), тем больше параллактическое смещение.
Рис. 3.10. Схема триангуляции
Для определения длины дуги используется система треугольников — способ триангуляции , который впервые был применён ещё в 1615 г. Пункты в вершинах этих треугольников выбираются по обе стороны дуги на расстоянии 30—40 км друг от друга так, чтобы из каждого пункта были видны по крайней мере два других. Основой для вычисления длин сторон во всех этих треугольниках является размер базиса AC (рис. 3.10). Точность измерения базиса длиной в 10 км составляет около 1 мм. Во всех пунктах устанавливают геодезические сигналы — вышки высотой в несколько десятков метров. С вершины сигнала с помощью угломерного инструмента ( теодолита ) измеряют углы между направлениями на два-три соседних пункта. Измерив углы в треугольнике, одной из сторон которого является базис, геодезисты получают возможность вычислить длину двух других его сторон. Проводя затем измерение углов из пунктов, расстояние между которыми вычислено, можно узнать длину двух очередных сторон в треугольнике. Зная длину сторон этих треугольников, можно определить длину дуги AB .
В какой степени форма Земли отличается от шара, выяснилось в конце XVIII в. Для уточнения формы Земли Французская академия наук снарядила сразу две экспедиции. Одна из них работала в экваториальных широтах Южной Америки в Перу, другая — вблизи Северного полярного круга на территории Финляндии и Швеции. Измерения показали, что длина одного градуса дуги меридиана на севере больше, чем вблизи экватора. Последующие исследования подтвердили, что длина дуги одного градуса меридиана увеличивается с возрастанием географической широты. Это означало, что форма Земли — не идеальный шар: она сплюснута у полюсов. Её полярный радиус на 21 км короче экваториального.
Для школьного глобуса масштаба 1 : 50 000 000 отличие этих радиусов будет всего 0,4 мм, т. е. совершенно незаметно.
Отношение разности величин экваториального и полярного радиусов Земли к величине экваториального называется сжатием . По современным данным, оно составляет , или 0,0034. Это означает, что сечение Земли по меридиану будет не окружностью, а эллипсом, у которого большая ось проходит в плоскости экватора, а малая совпадает с осью вращения.
В XX в. благодаря измерениям, точность которых составила 15 м, выяснилось, что земной экватор также нельзя считать окружностью. Сплюснутость экватора составляет всего (в 100 раз меньше сплюснутости меридиана). Более точно форму нашей планеты передаёт фигура, называемая эллипсоидом, у которого любое сечение плоскостью, проходящей через центр Земли, не является окружностью.
В настоящее время форму Земли принято характеризовать следующими величинами:
сжатие эллипсоида — 1 : 298,25;
средний радиус — 6371,032 км;
длина окружности экватора — 40075,696 км.
2. Определение расстояний в Солнечной системе. Горизонтальный параллакс
И змерить расстояние от Земли до Солнца удалось лишь во второй половине XVIII в., когда был впервые определён горизонтальный параллакс Солнца. По сути дела, при этом измеряется параллактическое смещение объекта, находящегося за пределами Земли, а базисом является её радиус.
Горизонтальным параллаксом ( p) называется угол, под которым со светила виден радиус Земли, перпендикулярный лучу зрения (рис. 3.11) .
Рис. 3.11. Горизонтальный параллакс светила
Из треугольника OAS можно выразить величину — расстояние OS = D :
D = ,
где R — радиус Земли. По этой формуле можно вычислить расстояние в радиусах Земли, а зная его величину, — выразить расстояние в километрах.
Очевидно, что чем дальше расположен объект, тем меньше его параллакс. Наибольшее значение имеет параллакс Луны, который меняется в связи с тем, что Луна обращается по эллиптической орбите, и в среднем составляет 57 ʹ . Параллаксы планет и Солнца значительно меньше. Так, параллакс Солнца равен 8,8 ʺ . Такому значению параллакса соответствует расстояние до Солнца, примерно равное 150 млн км. Это расстояние принимается за одну астрономическую единицу (1 а. е.) и используется при измерении расстояний между телами Солнечной системы.
Известно, что для малых углов sin p ≈ p , если угол p выражен в радианах. В одном радиане содержится 206 265 ʺ . Тогда, заменяя sin p на p и выражая этот угол в радианной мере, получаем формулу в виде, удобном для вычислений:
D = R ,
или (с достаточной точностью)
D = R .
Во второй половине XX в. развитие радиотехники позволило определять расстояния до тел Солнечной системы посредством радиолокации . Первым объектом среди них стала Луна. Затем радиолокационными методами были уточнены расстояния до Венеры, Меркурия, Марса и Юпитера. На основе радиолокации Венеры величина астрономической единицы определена с точностью порядка километра. Столь высокая точность определения расстояний — необходимое условие для расчётов траекторий полёта космических аппаратов, изучающих планеты и другие тела Солнечной системы. В настоящее время благодаря использованию лазеров стало возможным провести оптическую локацию Луны. При этом расстояния до лунной поверхности измеряются с точностью до сантиметров.
П РимеР РешениЯ задаЧи
На каком расстоянии от Земли находится Сатурн, когда его горизонтальный параллакс равен 0,9 ʺ ?
Известно, что параллакс Солнца на расстоянии в 1 а. е. равен 8,8 ʺ .
Тогда, написав формулы для расстояния до Солнца и до Сатурна и поделив их одна на другую, получим:
=
.
D 1 = =
= 9,8 а. е.
Ответ : D 1 = 9,8 а. е.
3. Определение размеров светил
Рис. 3.12. Угловые размеры светила
З ная расстояние до светила, можно определить его линейные размеры, если измерить его угловой радиус ρ (рис. 3.12). Формула, связывающая эти величины, аналогична формуле для определения параллакса:
D = .
Учитывая, что угловые диаметры даже Солнца и Луны составляют примерно 30 ʹ , а все планеты видны невооружённым глазом как точки, можно воспользоваться соотношением: sin ρ ≈ ρ . Тогда:
D = и D =
.
r = R .
Если расстояние D известно, то
где величина ρ выражена в радианах.
П РимеР РешениЯ задаЧи
Чему равен линейный диаметр Луны, если она видна с расстояния 400 000 км под углом примерно 30 ʹ ?
Если ρ выразить в радианах, то
d = = 3490 км.
Ответ : d = 3490 км.
В опросы 1. Какие измерения, выполненные на Земле, свидетельствуют о её сжатии? 2. Меняется ли и по какой причине горизонтальный параллакс Солнца в течение года? 3. Каким методом определяется расстояние до ближайших планет в настоящее время?
У пражнение 11 1. Чему равен горизонтальный параллакс Юпитера, наблюдаемого с Земли в противостоянии, если Юпитер в 5 раз дальше от Солнца, чем Земля? 2. Расстояние Луны от Земли в ближайшей к Земле точке орбиты (перигее) 363 000 км, а в наиболее удалённой (апогее) — 405 000 км. Определите горизонтальный параллакс Луны в этих положениях. 3. Во сколько раз Солнце больше, чем Луна, если их угловые диаметры одинаковы, а горизонтальные параллаксы равны 8,8 ʺ и 57 ʹ соответственно? 4. Чему равен угловой диаметр Солнца, видимого с Нептуна?
Источник