Меню

Угол падения солнца зимой

Высота солнца над горизонтом: изменение и измерение. Восход солнца в декабре

Жизнь на нашей планете зависит от количества солнечного света и тепла. Страшно представить даже на миг, что было бы, если бы на небе не было такой звезды, как Солнце. Каждая травинка, каждый листочек, каждый цветочек нуждается в тепле и свете, как люди в воздухе.

Угол падения лучей солнца равен высоте солнца над горизонтом

Количество солнечного света и тепла, которое поступает на земную поверхность, прямо пропорционально углу падения лучей. Солнечные лучи могут падать на Землю под углом от 0 до 90 градусов. Угол попадания лучей на землю разный, потому что наша планета имеет форму шара. Чем он больше, тем светлее и теплее.

Таким образом, если луч идёт под углом 0 градусов, он только скользит вдоль поверхности земли, не нагревая её. Такой угол падения бывает на Северном и Южном полюсах, за полярным кругом. Под прямым углом солнечные лучи падают на экватор и на поверхность между Южным и Северным Тропиком.

Если угол попадания солнечных лучей на землю прямой, это говорит о том, что солнце в зените.

Таким образом, угол падения лучей на поверхность земли и высота солнца над горизонтом равны между собой. Зависят они от географической широты. Чем ближе к нулевой широте, тем угол падения лучей ближе к 90 градусам, тем выше находится солнце над горизонтом, тем теплее и светлее.

Как солнце изменяет свою высоту над горизонтом

Высота солнца над горизонтом не является постоянной величиной. Напротив, она всегда изменяется. Причина этого кроется в непрерывном движении планеты Земля вокруг звезды Солнце, а также вращении планеты Земля вокруг собственной оси. В результате день сменяет ночь, а времена года друг друга.

Территория между тропиками получает больше всех тепла и света, здесь день и ночь практически равны друг другу по продолжительности, а солнце находится в зените 2 раза в год.

Поверхность за полярным кругом получает всех меньше тепла и света, здесь существуют такие понятия, как полярные день и ночь, которые длятся около полугода.

Дни осеннего и весеннего равноденствия

Выделены 4 основные астрологические даты, которые определяет высота солнца над горизонтом. 23 сентября и 21 марта – дни осеннего и весеннего равноденствия. Это означает, что высота солнца над горизонтом в сентябре и марте в эти дни 90 градусов.

Южное и Северное полушария освещаются солнцем одинаково, а долгота ночи равна долготе дня. Когда в Северном полушарии наступает астрологическая осень, то в Южном, наоборот, весна. То же самое можно сказать о зиме и лете. Если в Южном полушарии зима, то в Северном – лето.

Дни летнего и зимнего солнцестояния

22 июня и 22 декабря – дни летнего и зимнего солнцестояния. 22 декабря наблюдается самый короткий день и самая длинная ночь в Северном полушарии, а зимнее солнце находится на самой низкой высоте над горизонтом за весь год.

Выше широты 66,5 градуса солнце находится под горизонтом и не восходит. Это явление, когда зимнее солнце не восходит на горизонт, называется полярной ночью. Самая короткая ночь бывает на широте 67 градусов и длится всего 2 суток, а самая длинная бывает на полюсах и длится 6 месяцев!

Декабрь является из всего года тем месяцем, когда в Северном полушарии самые длинные ночи. Люди в Центральной России просыпаются на работу в темноте и возвращаются тоже в темное время суток. Это тяжелый месяц для многих, так как нехватка солнечного света сказывается на физическом и моральном состоянии людей. По этой причине может даже развиться депрессия.

Читайте также:  Ультрафиолетовый свет от солнца

В Москве в 2016 г. восход солнца в декабре 1 числа будет в 08.33. При этом долгота дня составит 7 часов 29 минут. Заход солнца за горизонт будет очень рано, в 16.03. Ночь составит 16 часов 31 минуту. Таким образом, получается, что долгота ночи в 2 раза больше, чем долгота дня!

В этом году день зимнего солнцестояния – 21 декабря. Самый короткий день будет длиться ровно 7 часов. Затем 2 дня продержится такая же ситуация. И уже с 24 декабря день пойдёт на прибыль медленно, но верно.

В среднем в сутки будет прибавляться по одной минуте светлого времени. В конце месяца восход солнца в декабре будет ровно в 9 часов, что на 27 минут позже, чем 1-го декабря

22 июня – день летнего солнцестояния. Всё происходит с точностью до наоборот. За весь год именно в эту дату самый длинный день по продолжительности и самая короткая ночь. Это касаемо Северного полушария.

В Южном всё наоборот. С этим днём связаны интересные природные явления. За Полярным кругом наступает полярный день, солнце не заходит за горизонт на Северном полюсе 6 месяцев. В Санкт-Петербурге в июне начинаются загадочные белые ночи. Длятся они примерно с середины июня в течение двух-трёх недель.

Все эти 4 астрологические даты могут меняться на 1-2 дня, так как солнечный год не всегда совпадает с календарным годом. Также смещения происходят в високосные года.

Высота солнца над горизонтом и климатические условия

Солнце является одним из самых важных климатообразующих факторов. В зависимости от того, как изменялась высота солнца над горизонтом над конкретным участком земной поверхности, меняются климатические условия и времена года.

Например, на Крайнем Севере лучи солнца падают под очень маленьким углом и только лишь скользят вдоль поверхности земли, совсем не нагревая её. Под условием этого фактора климат здесь крайне суровый, присутствует вечная мерзлота, холодные зимы с леденящими ветрами и снегами.

Чем больше высота солнца над горизонтом, тем теплее климат. Например, на экваторе он необычайно жаркий, тропический. Сезонные колебания также в районе экватора практически не чувствуются, в этих районах вечное лето.

Измерение высоты солнца над горизонтом

Как говорится, всё гениальное – просто. Так и здесь. Прибор для измерения высоты солнца над горизонтом элементарно прост. Он представляет собой горизонтальную поверхность с шестом посередине длиной 1 метр. В солнечный день в полдень шест отбрасывает самую короткую тень. С помощью этой кратчайшей тени и проводятся расчёт и измерения. Нужно замерить угол между концом тени и отрезком, соединяющим конец шеста с концом тени. Эта величина угла и будет являться углом нахождения солнца над горизонтом. Этот прибор называется гномоном.

Гномон – это древний астрологический инструмент. Существуют и другие приборы для измерения высоты солнца над горизонтом, такие как секстант, квадрант, астролябия.

Источник

Особенности размещения солнечных панелей

При выборе оптимальной ориентации солнечных панелей следует обратить внимание на практическое использование солнечных установок разных типов. На многочисленных сайтах, которые посвящаются солнечной энергии, данный вопрос не достаточно раскрыт, а незнание может привести к понижению эффективности панелей до самого низкого уровня.

Угол попадания солнечных лучей на поверхность панелей достаточно сильно влияет на коэффициент отражения, следовательно, на долю невоспринятой солнечной энергии. Пример: для стекла при отклонении угла падения от перпендикуляра к его поверхности до 30°, коэффициент отражения почти не изменяется и составляет меньше 5%, то есть больше 95% излучения, которое попадает на поверхность, проходит внутрь. Дальше рост отражение более заметный: к 60° доля отраженного излучения увеличивается практически вдвое – до 10% и т.д.

Читайте также:  Коляда это бог солнца

Эффективная площадь панели является более важным фактором. Эффективная площадь равна реальной площади панели, умноженная на синус угла между плоскостью и направлением потока. Поэтому, если панель перпендикулярна потоку, то ее эффективная площадь такая же, как и реальная. Если поток отклонить на 60°, то площадь составляет половину реальной площади. Если же поток параллельный панели, то эффективная площадь приравнивается нулю. В результате видно, что отклонение потока от перпендикуляра к панели не просто увеличивает отражение, но и может снижать эффективную площадь, обуславливая снижение выработки такой энергии.

Наиболее эффективной является постоянная ориентация панели перпендикулярно к потоку солнечных лучей. Для этого потребуется изменение панели в двух плоскостях, потому что направление Солнца зависит от времени суток и сезона. Конечно, данная система технически возможна, но является достаточно сложной, поэтому дорогая и не очень надежная.

Как известно, при углах падения лучей до 30°, коэффициент отражения на поверхности стекла минимальный и не изменяется, в на протяжении всего года угол максимального подъема солнца над горизонтом отклоняется на 23°. Даже при отклонении угла от перпендикуляра на 23° эффективная площадь панели остается достаточно объемной, не меньше 92% от ее реальной площади. Поэтому следует ориентироваться на среднегодовую высоту максимального подъема Солнца, а также ограничиться вращением в одной плоскости без потери эффективности – вокруг полярной оси Земли, скоростью 1 оборот в сутки. Относительно горизонтали угол наклона вращения панели приравнивается к географической широте месторасположения объекта. Например, Москва находится на широте 56°, следовательно, ось вращения панели должна быть наклонена на север на 56° относительно поверхности. Организовать на практике такое вращение достаточно просто, но для вращения без препятствий необходимо достаточно много места. Также нужно организовать скользящее соединение, которое позволит отводить от вращающей панели всю полученную энергию, или же ограничиться гибкими коммуникациями с фиксированным соединением, но при этом необходимо автоматизировать возврат панели на исходное положение в ночное время. Иначе избежать перекручивания и обрыва отводящих коммуникаций энергию не получится. Такие решения достаточно повышают уровень сложности и снижают надежность и эффективность системы. А при возрастании мощности панели усложняются технические проблемы в геометрической прогрессии.

Исходя из вышесказанного, панели индивидуальных солнечных установок в основном монтируются в неподвижном состоянии, это обеспечит покупателю достаточно низкую цену и высокий уровень надежности такой установки. Но и здесь необходимо правильно выбрать угол наклона и размещения панели. Ниже приведен график восприятия солнечной энергии на примере Москвы.


Восприятие солнечной энергии панелями различной ориентации в Москве

Оранжевая линия показывает результаты отслеживания вращение Солнца вокруг полярной оси.
Синяя линия – неподвижная горизонтальная панель.
Зеленая линия – неподвижная вертикальная панель, направленная на юг.
Красная линия – неподвижная панель, направленная на юг под углом 40° к горизонту.

Проанализируем диаграммы инсоляции для разных углов установки панели. Не секрет, что панель, которая вращается вслед за Солнцем, является самой эффективной (оранжевая линия). Но даже в длинные летние дни эффективность такой панели под оптимальным углом (красная линия) составляет всего 30%. Но в такие дни тепла и света достаточно много. А в период с октября по февраль преимущество поворачивающейся панели над неподвижной панелью минимальное и неощутимое. В такое время дополнением наклонной панели служит вертикальная панель, а не горизонтальная (зеленая линия). Таким образом, низкие лучи солнца зимой скользят по горизонтальной панели, и отлично воспринимаются перпендикулярной им вертикальной. Следует, что эффективность перпендикулярной панели в ноябре, декабре и феврале превосходит производство наклонной панели и практически не отличается от эффективности панели, которая вращается. А в марте и октябре продолжительность дня большая, чем зимой, поэтому вращающаяся панель превосходит все неподвижные панели, но их эффективность практически одинаковая. И только в период с апреля по август, когда дни наиболее длинные, горизонтальная панель считается наиболее эффективной, нежели вертикальная. В июне горизонтальная панель превосходит вертикальную. Такой факт очевиден, поскольку летний день в Москве длится более 17 часов, а в полусфере вертикальной панели Солнце может находиться не больше 12 часов, а остальные 5 часов Солнце находится позади неё. При учете угла падения не более 60°, доля отраженного света от поверхности панели стремительно растет, а эффективность площади уменьшается больше чем в 2 раза. Тогда время эффективного восприятия солнечного излучения панелью не более 8 часов, т.е. 50% от общей продолжительности дня. Так можно объяснить факт стабилизации производительности вертикальных панелей на протяжении всего периода длинных дней, которые начинаются в марте, а заканчиваются в сентябре. Рассмотрим январь, когда производительность панелей практически одинаковая. Январь в Москве всегда пасмурный, больше 90% солнечной энергии является рассеянным. Для такого излучения совсем не имеет значения ориентация панели. Но даже несколько солнечных дней в январе способны снизить производительность горизонтальной панели на 20%.

Читайте также:  Как солнце притягивает планеты

Какой же угол наклона выбрать?

Угол наклона зависит от того, когда Вам необходима солнечная энергия. Если Вы планируете использовать ее в теплое время года, то предпочтительнее выбирать оптимальный угол наклона — перпендикулярный к среднему положению Солнца в период осеннего и весеннего равноденствия. Такой угол на 10-15° меньше географической широты для Москвы и составляет 40-45°. Если такая энергия Вам необходима круглый год, тогда нужно использовать весь максимум в зимние месяцы. Значит необходимо ориентироваться на среднее положение Солнца между осенним и весенним равноденствием, а панели размещать ближе к вертикали, т.е. на 5-15° больше географической широты.

Если согласно архитектурным соображениям невозможно выставить панель под таким углом, значит, придется выбирать между углом наклона не больше 40° или устанавливать панель вертикально. В такой ситуации более предпочтительной является вертикальная установка панели. При такой установке не страшен недобор энергии в длинные солнечные дни, поскольку в этот период Солнца достаточно много, а необходимость производительности энергии обычно не очень велика, как в холодное время года. Конечно же угол наклона панели необходимо ориентировать на юг, но даже небольшое отклонение в 10-15° на восток или запад практически ничего не изменит, поэтому небольшое отклонение допустимо.

Размещение солнечных панелей горизонтально совсем себя не оправдало и не является эффективным. Кроме сильного снижения выработки энергии в осеннее-зимний период, на горизонтальных панелях постоянно скапливается пыль, снег, вода. А согласно инструкции по уходу за панелями, все это нужно убирать только вручную. Если панель выставить под углом больше 60°, то снег практически не задерживается на ней и панель очищается сама, а пыль отлично смывает дождь.

И еще один интересный факт – если стекло поверхности является рельефным, а не гладким, то оно сможет более эффективно улавливать боковой свет, а также передавать его на рабочие элементы солнечной панели. Самым эффективным является волнообразный рельеф, с выступами и впадинами с севера на юг, а для вертикальных панелей – сверху вниз. Рифленое стекло увеличивает выработку неподвижной панели на 5-10%.

Источник

Adblock
detector