Меню

Укажи химический символ второго по распространению во вселенной химического элемента

Топ-10: самые распространенные химические элементы во всей Вселенной

Все мы знаем, что водород наполняет нашу Вселенную на 75%. Но знаете ли вы, какие еще есть химические элементы, не менее важные для нашего существования и играющие значительную роль для жизни людей, животных, растений и всей нашей Земли? Элементы из этого рейтинга формируют всю нашу Вселенную!

10. Сера (распространенность относительно кремния – 0.38)

Этот химический элемент в таблице Менделеева значится под символом S и характеризуется атомным номером 16. Сера очень распространена в природе.

9. Железо (распространенность относительно кремния – 0.6)

Обозначается символом Fe, атомный номер – 26. Железо очень часто встречается в природе, особенно важную роль оно играет в формировании внутренней и внешней оболочки ядра Земли.

8. Магний (распространенность относительно кремния – 0.91)

В таблице Менделеева магний можно найти под символом Mg, и его атомный номер – 12. Что самое удивительное в этом химическом элементе, так это то, что он чаще всего выделяется при взрыве звезд в процессе их преобразования в сверхновые тела.

7. Кремний (распространенность относительно кремния – 1)

Обозначается как Si. Атомный номер кремния – 14. Этот серо-голубой металлоид очень редко встречается в земной коре в чистом виде, но довольно распространен в составе других веществ. Например, его можно обнаружить даже в растениях.

6. Углерод (распространенность относительно кремния – 3.5)

Углерод в таблице химических элементов Менделеева значится под символом С, его атомный номер – 6. Самой знаменитой аллотропной модификацией углерода являются одни из самых желанных драгоценных камней в мире – алмазы. Углерод активно применяют и в других в промышленных целях более будничного назначения.

5. Азот (распространенность относительно кремния – 6.6)

Символ N, атомный номер 7. Впервые открытый шотландским врачом Дэниелом Рутерфордом (Daniel Rutherford), азот чаще всего встречается в форме азотной кислоты и нитратов.

4. Неон (распространенность относительно кремния – 8.6)

Обозначается символом Ne, атомный номер — 10. Не секрет, что именно этот химический элемент ассоциируется с красивым свечением.

3. Кислород (распространенность относительно кремния – 22)

Химический элемент под символом О и с атомным номером 8, кислород незаменим для нашего существования! Но это не значит, что он присутствует только на Земле и служит только для человеческих легких. Вселенная полна сюрпризов.

2. Гелий (распространенность относительно кремния – 3.100)

Символ гелия – He, атомный номер – 2. Он бесцветен, не имеет запаха и вкуса, не ядовит, и его точка кипения – самая низкая среди всех химических элементов. А еще благодаря ему шарики взмывают ввысь!

1. Водород (распространенность относительно кремния – 40.000)

Истинный номер один в нашем списке, водород находится в таблице Менделеева под символом Н и обладает атомным номером 1. Это самый легкий химический элемент периодической таблицы и самый распространенный элемент во всей изученной человеком Вселенной.

Источник

Какой химический элемент наиболее распространен во Вселенной?

Наиболее распространенными во Вселенной являются самые легкие элементы – водород и гелий.

На долю всех других, в том числе самых сложных «тяжелых», элементов приходится менее 1 процента. По массе 76,5 процента приходится на водород, 21,5 процента – на гелий, 0,3 процента – на неон, 0,82 процента – на кислород, 0,34 процента – на углерод, 0,12 процента – на азот, 0,12 процента – на железо, 0,07 процента – на кремний, 0,06 процента – на магний, 0,04 процента – на серу. Остаток – 0,13 процента – приходится на все другие элементы.

Таким образом, самым распространенным во Вселенной химическим элементом является водород.

Невидимый невооруженным глазом, этот газ может быть обнаружен с помощью радиотелескопов по испускаемым радиоволнам длиной 21 сантиметр.

Водород заполняет почти все межзвездное пространство, однако он невероятно разрежен: всего один атом на 10 или даже 100 кубических сантиметров. Тем не менее, поскольку межзвездное пространство огромно, огромен и общий объем газа.

Некоторые водородные облака «горячие», они имеют температуру до 7500 градусов, в редких случаях температура водорода доходит до миллионов градусов. Существуют также водородные облака большей плотности, в которых на 1 кубический сантиметр приходится от 10 до 100 атомов. Эти облака гораздо холоднее: их температура может опускаться до – 200 градусов Цельсия.

Большой взрыв создал только два химических элемента – водород и гелий (и небольшие количества дейтерия и лития).

Все остальные элементы, заполняющие таблицу Менделеева, появились только после возникновения звезд.

В их недрах в ходе термоядерных реакций синтеза постепенно образовались азот, кислород, углерод и более тяжелые элементы. Эволюция крупных звезд завершается их взрывами, после которых накопившиеся в таких звездах элементы рассеиваются в пространстве, загрязняют облака межзвездного газа и в свой час служат исходным сырьем для возникновения новых звезд.

В мире, в котором мы живем, идет постоянная переработка первородной материи – Вселенная обогащается тяжелыми элементами, а самых легких становится все меньше. Из образовавшихся в звездных недрах химических элементов состоит и наша Земля, и все живые существа на ней, в том числе люди. Поэтому все мы в определенном смысле дети звезд.

Источник

Обилие химических элементов — Abundance of the chemical elements

Обилие химических элементов является мерой возникновения из химических элементов относительно всех других элементов в данной среде. Численность измеряется одним из трех способов: массовая доля (то же, что и массовая доля); по мольной доле (доля атомов в числовом исчислении, а иногда и доля молекул в газах); или по объемной доле . Объемная доля — это обычная мера содержания в смешанных газах, таких как атмосферы планет, и аналогична по величине молекулярной мольной доле для газовых смесей при относительно низких плотностях и давлениях, а также в идеальных газовых смесях. Большинство значений численности в этой статье даны в массовых долях.

Например, содержание кислорода в чистой воде можно измерить двумя способами: массовая доля составляет около 89%, потому что это доля массы воды, которая является кислородом. Однако мольная доля составляет около 33%, потому что только 1 атом из 3 в воде, H 2 O, является кислородом. В качестве другого примера, глядя на масс-фракции обилие водорода и гелия в обоих Вселенной в целом и в атмосфере из газовых гигантских планет , таких как Юпитер , это 74% для водорода и 23-25% для гелия ; в то время как (атомная) мольная доля водорода в этих средах составляет 92%, а гелия — 8%. Изменение данной среды на внешнюю атмосферу Юпитера , где водород двухатомный, а гелий нет, изменяет молекулярную мольную долю (долю от общего количества молекул газа), а также долю атмосферы по объему водорода примерно до 86%, и гелия до 13%.

Читайте также:  Если человек не стал для тебя вселенной

Изобилие химических элементов во Вселенной определяется большим количеством водорода и гелия, которые были произведены в результате Большого взрыва . Остальные элементы, составляющие лишь около 2% Вселенной, в основном были произведены сверхновыми и некоторыми красными звездами-гигантами . Литий , бериллий и бор встречаются редко, потому что, хотя они производятся в результате ядерного синтеза, они затем разрушаются другими реакциями в звездах. Элементов от углерода до железа относительно больше во Вселенной из-за простоты их получения в процессе нуклеосинтеза сверхновых . Элементы с более высоким атомным номером, чем железо (элемент 26), становятся все более редкими во Вселенной, потому что при их производстве они все больше поглощают звездную энергию. Кроме того, элементы с четными атомными номерами обычно более распространены, чем их соседи в периодической таблице , из-за благоприятной энергетики образования.

Обилие элементов на Солнце и на внешних планетах такое же, как и во Вселенной. Из-за солнечного нагрева элементы Земли и внутренних каменистых планет Солнечной системы претерпели дополнительное истощение летучих водорода, гелия, неона, азота и углерода (который улетучивается в виде метана). Кора, мантия и ядро ​​Земли демонстрируют признаки химической сегрегации плюс некоторая секвестрация по плотности. Более легкие силикаты алюминия находятся в коре, больше силиката магния в мантии, в то время как металлическое железо и никель составляют ядро. Обилие элементов в специализированных средах, таких как атмосфера, океаны или человеческое тело, в первую очередь является продуктом химического взаимодействия со средой, в которой они находятся.

СОДЕРЖАНИЕ

Вселенная

Спектроскопическая оценка десяти наиболее распространенных элементов в галактике Млечный Путь

Z Элемент Массовая доля (ppm)
1 Водород 739 000
2 Гелий 240 000
8 Кислород 10 400
6 Углерод 4600
10 Неон 1,340
26 год Утюг 1,090
7 Азот 960
14 Кремний 650
12 Магний 580
16 Сера 440
Общее 999 500

Элементы, то есть обычная ( барионная ) материя, состоящая из протонов , нейтронов и электронов , составляют лишь небольшую часть содержимого Вселенной . Космологические наблюдения показывают, что только 4,6% энергии Вселенной (включая массу, вносимую энергией, E = mc² ↔ m = E / c²) составляет видимую барионную материю, из которой состоят звезды , планеты и живые существа. Остальное, как полагают, состоит из темной энергии (68%) и темной материи (27%). Это формы материи и энергии, которые, как считается, существуют на основе научной теории и индуктивных рассуждений, основанных на наблюдениях, но они не наблюдались напрямую, и их природа не совсем понятна.

Наиболее стандартная (барионная) материя находится в межгалактическом газе, звездах и межзвездных облаках в форме атомов или ионов ( плазма ), хотя ее можно найти в вырожденных формах в экстремальных астрофизических условиях, таких как высокие плотности внутри белых карликов. и нейтронные звезды .

Водород — самый распространенный элемент во Вселенной; гелий на втором месте. Однако после этого ранг изобилия больше не соответствует порядковому номеру ; кислород имеет степень распространенности 3, но атомный номер 8. Все остальные встречаются значительно реже.

Обилие самых легких элементов хорошо предсказывается стандартной космологической моделью , поскольку они в основном образовались вскоре (то есть в течение нескольких сотен секунд) после Большого взрыва в процессе, известном как нуклеосинтез Большого взрыва . Более тяжелые элементы в основном были произведены гораздо позже, внутри звезд .

По оценкам, водород и гелий составляют примерно 74% и 24% всей барионной материи во Вселенной соответственно. Несмотря на то, что они составляют лишь очень небольшую часть Вселенной, оставшиеся «тяжелые элементы» могут сильно влиять на астрономические явления. Только около 2% (по массе) диска галактики Млечный Путь состоит из тяжелых элементов.

Эти другие элементы создаются звездными процессами. В астрономии «металл» — это любой элемент, кроме водорода или гелия. Это различие важно, потому что водород и гелий — единственные элементы, которые были произведены в значительных количествах во время Большого взрыва. Таким образом, Металличность из галактики или другого объекта является показателем звездной активности после Большого взрыва.

В общем, элементы вплоть до железа образуются в больших звездах в процессе превращения в сверхновые . Железо-56 особенно распространено, так как это наиболее стабильный нуклид (в том смысле, что он имеет самую высокую ядерную энергию связи на нуклон) и может быть легко получен из альфа-частиц (являясь продуктом распада радиоактивного никеля-56 , в конечном итоге полученного из 14 ядер гелия). Элементы тяжелее железа образуются в процессах поглощения энергии в крупных звездах, и их содержание во Вселенной (и на Земле) обычно уменьшается с увеличением атомного номера.

Солнечная система

Самые распространенные нуклиды
в Солнечной системе

Нуклид А Массовая доля в миллионных долях Фракция атома в миллионных долях
Водород-1 1 705 700 909 964
Гелий-4 4 275 200 88 714
Кислород-16 16 9 592 477
Углерод-12 12 3032 326
Азот-14 14 1,105 102
Неон-20 20 1,548 100
Другие нуклиды: 3 879 149
Кремний-28 28 год 653 30
Магний-24 24 513 28 год
Утюг-56 56 1,169 27
Сера-32 32 396 16
Гелий-3 3 35 год 15
Водород-2 2 23 15
Неон-22 22 208 12
Магний-26 26 год 79 4
Углерод-13 13 37 4
Магний-25 25 69 4
Алюминий-27 27 58 3
Аргон-36 36 77 3
Кальций-40 40 60 2
Натрий-23 23 33 2
Утюг-54 54 72 2
Кремний-29 29 34 2
Никель-58 58 49 1
Кремний-30 30 23 1
Утюг-57 57 год 28 год 1

Следующий график (шкала журнала заметок) показывает изобилие элементов в Солнечной системе . В таблице показаны двенадцать наиболее распространенных элементов в нашей галактике (оцененные спектроскопически), измеренные в частях на миллион по массе. Близлежащие галактики, которые развивались по аналогичным направлениям, имеют соответствующее обогащение элементами более тяжелыми, чем водород и гелий. Более далекие галактики рассматриваются такими, какими они были в прошлом, поэтому их содержание элементов кажется более близким к изначальной смеси. Однако, поскольку физические законы и процессы единообразны во всей Вселенной, ожидается, что и в этих галактиках будет одинаковое количество элементов.

Читайте также:  Обои для андроид вселенная

Обилие элементов соответствует их происхождению от Большого взрыва и нуклеосинтеза в ряде звезд- прародителей сверхновых . Очень распространенные водород и гелий являются продуктами Большого взрыва, в то время как следующие три элемента встречаются редко, поскольку у них было мало времени, чтобы сформироваться во время Большого взрыва, и они не образуются в звездах (однако они производятся в небольших количествах в результате распада более тяжелых элементов). элементы в межзвездной пыли в результате воздействия космических лучей ).

Начиная с углерода, элементы были произведены в звездах путем накопления из альфа-частиц (ядер гелия), что привело к попеременно большему количеству элементов с четными атомными номерами (они также более стабильны). Эффект того, что химические элементы с нечетными номерами, обычно более редкие во Вселенной, были эмпирически замечены в 1914 году и известны как правило Оддо-Харкинса .

Связь с ядерной энергией связи

Наблюдалась слабая корреляция между оценкой содержания элементов во Вселенной и кривой энергии связи ядер . Грубо говоря, относительная стабильность различных атомных нуклидов оказала сильное влияние на относительное содержание элементов, образовавшихся в результате Большого взрыва , а затем во время развития Вселенной. См. Статью о нуклеосинтезе для объяснения того, как определенные процессы ядерного синтеза в звездах (например, сжигание углерода и т. Д.) Создают элементы тяжелее водорода и гелия.

Еще одна наблюдаемая особенность — неровное чередование относительного содержания и дефицита соседних атомных номеров на кривой содержания элементов и аналогичная картина уровней энергии на кривой энергии связи ядер. Это чередование вызвано более высокой относительной энергией связи (соответствующей относительной стабильности) четных атомных номеров по сравнению с нечетными атомными номерами и объясняется принципом исключения Паули . Массовая формула полуэмпирическое (SEMF), также называемая формула Вейцзеккера или массовая формула Бете-Вайцзекер , дает теоретическое объяснение общей формы кривой ядерной энергии связи.

земля

Земли образуются из того же облака материи, образованное Солнце, но планеты приобрели различные композиции в процессе формирования и эволюции Солнечной системы . В свою очередь, естественная история Земли привела к тому, что части этой планеты имели разную концентрацию элементов.

Масса Земли составляет примерно 5,98 × 10 24 кг. В массе он состоит в основном из железа (32,1%), кислорода (30,1%), кремния (15,1%), магния (13,9%), серы (2,9%), никеля (1,8%), кальция (1,5 %). %) и алюминия (1,4%); оставшиеся 1,2% составляют следовые количества других элементов.

Основной состав Земли по элементарной массе примерно аналогичен валовому составу Солнечной системы, с основными отличиями в том, что на Земле отсутствует большое количество летучих элементов — водорода, гелия, неона и азота, а также углерод, который был утерян в виде летучих углеводородов. Остающийся элементный состав примерно типичен для «каменистых» внутренних планет, которые образовались в тепловой зоне, где солнечное тепло вытеснило летучие соединения в космос. Земля сохраняет кислород как второй по величине компонент своей массы (и наибольшую атомную долю), в основном из-за того, что этот элемент удерживается в силикатных минералах, которые имеют очень высокую температуру плавления и низкое давление пара.

Расчетное содержание химических элементов на Земле. В двух правых столбцах указана массовая доля в частях на миллион (ppm) и доля по количеству атомов в частях на миллиард (ppb).

Атомный номер Имя Символ Массовая доля (ppm) Атомная доля (ppb)
8 кислород О 297000 482 000 000
12 магний Mg 154000 164 000 000
14 кремний Si 161000 150 000 000
26 год утюг Fe 319000 148 000 000
13 алюминий Al 15900 15 300 000
20 кальций Ca 17100 11 100 000
28 год никель Ni 18220 8 010 000
1 водород ЧАС 260 6 700 000
16 сера S 6350 5 150 000
24 хром Cr 4700 2 300 000
11 натрий Na 1800 2 000 000
6 углерод C 730 1,600,000
15 фосфор п 1210 1 020 000
25 марганец Mn 1700 800 000
22 титан Ti 810 440 000
27 кобальт Co 880 390 000
19 калий K 160 110 000
17 хлор Cl 76 56 000
23 ванадий V 105 53 600
7 азот N 25 46 000
29 медь Cu 60 25 000
30 цинк Zn 40 16 000
9 фтор F 10 14 000
21 год скандий Sc 11 6 300
3 литий Ли 1,10 4 100
38 стронций Sr 13 3 900
32 германий Ge 7.00 2,500
40 цирконий Zr 7.10 2 000
31 год галлий Ga 3,00 1,000
34 селен Se 2,70 890
56 барий Ба 4,50 850
39 иттрий Y 2,90 850
33 мышьяк В виде 1,70 590
5 бор B 0,20 480
42 молибден Пн 1,70 460
44 год рутений RU 1,30 330
78 платина Pt 1,90 250
46 палладий Pd 1,00 240
58 церий Ce 1.13 210
60 неодим Nd 0,84 150
4 бериллий Быть 0,05 140
41 год ниобий Nb 0,44 120
76 осмий Операционные системы 0,90 120
77 иридий Ir 0,90 120
37 рубидий Руб. 0,40 120
35 год бром Br 0,30 97
57 год лантан Ла 0,44 82
66 диспрозий Dy 0,46 74
64 гадолиний Б-г 0,37 61
52 теллур Te 0,30 61
45 родий Rh 0,24 61
50 банка Sn 0,25 55
62 самарий См 0,27 47
68 эрбий Э 0,30 47
70 иттербий Yb 0,30 45
59 празеодим Pr 0,17 31 год
82 Свинец Pb 0,23 29
72 гафний Hf 0,19 28 год
74 вольфрам W 0,17 24
79 золото Au 0,16 21 год
48 кадмий CD 0,08 18
63 европий Евросоюз 0,10 17
67 гольмий Хо 0,10 16
47 серебро Ag 0,05 12
65 тербий Tb 0,07 11
51 сурьма Sb 0,05 11
75 рений Re 0,08 10
53 йод я 0,05 10
69 тулий Тм 0,05 7
55 цезий CS 0,04 7
71 лютеций Лу 0,05 7
90 торий Чт 0,06 6
73 тантал Та 0,03 4
80 Меркурий Hg 0,02 3
92 уран U 0,02 2
49 индий В 0,01 2
81 год таллий Tl 0,01 2
83 висмут Би 0,01 1

Корка

Массовая доля девяти наиболее распространенных элементов в земной коре составляет приблизительно: кислород 46%, кремний 28%, алюминий 8,3%, железо 5,6%, кальций 4,2%, натрий 2,5%, магний 2,4%, калий 2,0% и титан 0,61%. Остальные элементы составляют менее 0,15%. Для получения полного списка см. Обилие элементов в земной коре .

Читайте также:  Тайны вселенной расклад таро

График справа показывает относительное содержание атомов химических элементов в верхней части континентальной коры Земли — части, которая относительно доступна для измерений и оценок.

Многие из элементов, показанных на графике, подразделяются на (частично перекрывающиеся) категории:

  1. породообразующие элементы (основные элементы в зеленом поле и второстепенные элементы в светло-зеленом поле);
  2. редкоземельные элементы (лантаноиды, La-Lu, Sc и Y; отмечены синим);
  3. основные промышленные металлы (мировое производство>

3 × 10 7 кг / год; отмечены красным);

  • драгоценные металлы (отмечены фиолетовым цветом);
  • девять самых редких «металлов» — шесть элементов платиновой группы плюс Au , Re и Te (металлоид) — в желтом поле. Они редко встречаются в коре, поскольку растворяются в железе и поэтому концентрируются в ядре Земли. Теллур является единственным наиболее обедненным элементом в силикатной Земле по сравнению с космическим распространением, потому что помимо того, что он концентрировался в виде плотных халькогенидов в ядре, он был сильно истощен в результате предварительной сортировки в туманности в виде летучего теллурида водорода .
  • Обратите внимание, что есть два разрыва, где будут находиться нестабильные (радиоактивные) элементы технеций (атомный номер 43) и прометий (атомный номер 61). Эти элементы окружены стабильными элементами, но оба имеют относительно короткий период полураспада (

    4 миллиона лет и

    18 лет соответственно). Таким образом, они крайне редки, поскольку любые их изначальные первоначальные фракции в материалах до Солнечной системы давно распались. Эти два элемента теперь производятся естественным путем только в результате спонтанного деления очень тяжелых радиоактивных элементов (например, урана , тория или следовых количеств плутония, которые присутствуют в урановых рудах) или в результате взаимодействия некоторых других элементов с космическими лучами . И технеций, и прометий были идентифицированы спектроскопически в атмосферах звезд, где они производятся в ходе продолжающихся процессов нуклеосинтеза.

    На графике содержания также есть изломы там, где должны были бы находиться шесть благородных газов , поскольку они не связаны химически в земной коре и генерируются в коре только цепочками распада радиоактивных элементов и поэтому встречаются там крайне редко.

    Восемь встречающихся в природе очень редких высокорадиоактивных элементов ( полоний , астат , франций , радий , актиний , протактиний , нептуний и плутоний ) не включены, так как любой из этих элементов, которые присутствовали при формировании Земли, распались эоны назад, а сегодня их количество незначительно и производится только в результате радиоактивного распада урана и тория.

    Кислород и кремний — самые распространенные элементы земной коры. На Земле и вообще на каменистых планетах кремний и кислород встречаются гораздо чаще, чем их космическое количество. Причина в том, что они соединяются друг с другом, образуя силикатные минералы . Другие распространенные в космосе элементы, такие как водород , углерод и азот, образуют летучие соединения, такие как аммиак и метан, которые легко улетучиваются в космос из-за высокой температуры образования планет и / или солнечного света.

    Редкоземельные элементы

    «Редкие» элементы земли — историческое неправильное название. Постоянство этого термина отражает скорее незнакомость, чем истинную редкость. Более распространенные редкоземельные элементы аналогичным образом сконцентрированы в коре по сравнению с обычными промышленными металлами, такими как хром, никель, медь, цинк, молибден, олово, вольфрам или свинец. Два наименее распространенных редкоземельных элемента ( тулий и лютеций ) встречаются почти в 200 раз чаще, чем золото . Однако, в отличие от обычных цветных и драгоценных металлов, редкоземельные элементы имеют очень небольшую тенденцию к концентрации в пригодных для использования рудных месторождениях. Следовательно, большая часть мировых запасов редкоземельных элементов поступает только из нескольких источников. Кроме того, все редкоземельные металлы очень похожи друг на друга по химическому составу, и поэтому их довольно трудно разделить на количества чистых элементов.

    Различия в содержании отдельных редкоземельных элементов в верхней континентальной коре Земли представляют собой суперпозицию двух эффектов: ядерного и геохимического. Во-первых, редкоземельные элементы с четными атомными номерами ( 58 Ce, 60 Nd, . ) имеют большее космическое и земное содержание, чем соседние редкоземельные элементы с нечетными атомными номерами ( 57 La, 59 Pr, . ). Во-вторых, более легкие редкоземельные элементы более несовместимы (потому что они имеют больший ионный радиус) и поэтому более сильно сконцентрированы в континентальной коре, чем более тяжелые редкоземельные элементы. В большинстве месторождений редкоземельных руд первые четыре редкоземельных элемента — лантан , церий , празеодим и неодим — составляют от 80% до 99% от общего количества редкоземельного металла, который может быть найден в руде.

    Мантия

    Массовая доля восьми самых распространенных элементов в мантии Земли (см. Основную статью выше) составляет приблизительно: кислород 45%, магний 23%, кремний 22%, железо 5,8%, кальций 2,3%, алюминий 2,2%, натрий 0,3%. , калий 0,3%.

    Основной

    В связи с массовой сегрегации , ядро Земли , как полагают, в основном состоит из железа (88,8%), с меньшим количеством никеля (5,8%), серы (4,5%), и менее чем 1% микроэлементов.

    Океан

    Самыми распространенными элементами в океане по массе в процентах являются кислород (85,84%), водород (10,82%), хлор (1,94%), натрий (1,08%), магний (0,13%), сера (0,09%), кальций (0,04%), калий (0,04%), бром (0,007%), углерод (0,003%) и бор (0,0004%).

    Атмосфера

    Порядок элементов в атмосфере по объемной доле (что примерно соответствует молекулярной доле) : азот (78,1%), кислород (20,9%), аргон (0,96%), за которым следуют (в неопределенном порядке) углерод и водород, потому что водяной пар и углекислый газ, которые представляют собой большинство из этих двух элементов в воздухе, являются переменными компонентами. Сера, фосфор и все другие элементы присутствуют в значительно меньших количествах.

    Согласно графику кривой содержания (вверху справа), аргон, значительный, если не главный компонент атмосферы, вообще не появляется в коре. Это связано с тем, что атмосфера имеет гораздо меньшую массу, чем кора, поэтому аргон, остающийся в коре, мало влияет на ее массовую долю, в то время как в то же время накопление аргона в атмосфере стало достаточно большим, чтобы быть значительным.

    Городские почвы

    Полный список содержания элементов в городских почвах см. В разделе Содержание элементов (страница данных) # Городские почвы .

    Источник

    Adblock
    detector