Меню

Ускорение свободного падения солнца вблизи земли

Каково ускорение свободного падения на поверхности Солнца, если радиус Солнца

Условие задачи:

Каково ускорение свободного падения на поверхности Солнца, если радиус Солнца в 108 раз больше радиуса Земли, а плотность в 4 раза меньше плотности Земли? (\(g=9,8\) м/с 2 )

Задача №2.5.5 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

\(R_с=108R_з\), \(\rho_с=0,25\rho_з\), \(g_з=9,8\) м/с 2 , \(g_с-?\)

Решение задачи:

Давайте узнаем как зависит ускорение свободного падения на поверхности некоторой планеты от её средней плотности и радиуса, для этого запишем формулу его определения:

Массу планеты можно найти из её средней плотности \(\rho\) и объема \(V\):

Планеты обычно имеют форму, близкую к шарообразной, поэтому объем \(V\) можно посчитать по следующей формуле:

Подставим выражения (2) и (3) в формулу (1), тогда:

Видно, что ускорение свободного падения вблизи поверхности некоторой планеты зависит линейно от средней плотности и радиуса планеты. Учитывая это, ускорения свободного падения на Земли и на Солнце можно определить по следующим формулам:

\[\left\< \begin
g_c = \frac<4><3>G\pi \rho_с R_с \hfill \\
g_з = \frac<4><3>G\pi \rho_з R_з \hfill \\
\end \right.\]

Разделим верхнее равенство на нижнее:

Так как в условии сказано, что \(R_с=108R_з\) и \(\rho_с=0,25\rho_з\), то:

Осталось посчитать численный ответ:

\[g = 27 \cdot 9,8 = 264,6\; м/с^2\]

Ответ: 264,6 м/с 2 .

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Источник

Ускорение свободного падения

Ускорение свободного падения на поверхности некоторых небесных тел, м/с 2

Солнце 273,1
Меркурий 3,68—3,74 Венера 8,88
Земля 9,81 Луна 1,62
Церера 0,27 Марс 3,86
Юпитер 23,95 Сатурн 10,44
Уран 8,86 Нептун 11,09
Плутон 0,61

Ускоре́ние свобо́дного паде́ния g (обычно произносится как «Же»), — ускорение, придаваемое телу в вакууме силой тяжести, то есть геометрической суммой гравитационного притяжения планеты (или другого астрономического тела) и сил инерции, вызванных её вращением, за исключением кориолисовых сил инерции [1] . В соответствии со вторым законом Ньютона, ускорение свободного падения численно равно силе тяжести, воздействующей на объект единичной массы.

Значение ускорения свободного падения на поверхности Земли обычно принимают равным 9,8 или 10 м/с². Стандартное («нормальное») значение, принятое при построении систем единиц, g = 9,80665 м/с² [2] , а в технических расчётах обычно принимают g = 9,81 м/с² .

Стандартное значение g было определено как «среднее» в каком-то смысле ускорение свободного падения на Земле, примерно равно ускорению свободного падения на широте 45,5° на уровне моря.

Реальное ускорение свободного падения на поверхности Земли зависит от широты, времени суток и других факторов. Оно варьируется от 9,780 м/с² на экваторе до 9,832 м/с² на полюсах [3] . Оно может быть вычислено (в м/с²) по эмпирической формуле:

Читайте также:  Золотой ветер утром солнце

где — широта рассматриваемого места, — высота над уровнем моря в метрах. [4] Эта формула применима лишь в ограниченном диапазоне высот от 0 до нескольких десятков км, где убывание ускорения свободного падения с высотой можно считать линейным (на самом же деле оно убывает квадратично).

Содержание

Вычисление ускорения свободного падения

Гравитационное ускорение на различной высоте h над Землёй

h , км g, м/с 2 h , км g, м/с 2
0 9,8066 20 9,7452
1 9,8036 50 9,6542
2 9,8005 80 9,5644
3 9,7974 100 9,505
4 9,7943 120 9,447
5 9,7912 500 8,45
6 9,7882 1000 7,36
8 9,7820 10 000 1,50
10 9,7759 50 000 0,125
15 9,7605 400 000 0,0025

Ускорение свободного падения состоит из двух слагаемых: гравитационного ускорения и центробежного ускорения.

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету однородным шаром массой M и вычислив гравитационное ускорение на расстоянии её радиуса R :

,

Если применить эту формулу для вычисления гравитационного ускорения на поверхности Земли (масса М = 5,9736·10 24 кг , радиус R = 6,371·10 6 м ), мы получим

м/с².

Полученное значение лишь приблизительно совпадает с ускорением свободного падения в данном месте. Отличия обусловлены:

  • центробежным ускорением, которое присутствует в системе отсчёта, связанной с вращающейся Землёй [5] ;
  • отличием формы Земли от шарообразной (см. геоид);
  • неоднородностью Земли, что используется для поиска полезных ископаемых по гравитационным аномалиям (гравиразведка).
Ускорение свободного падения для некоторых городов

Город Долгота Широта Высота над уровнем моря, м Ускорение свободного падения, м/с 2
Берлин 13,40 в.д. 52,50 с.ш. 40 9,81280
Будапешт 19,06 в.д. 47,48 с.ш. 108 9,80852
Вашингтон 77,01 з.д. 38,89 с.ш. 14 9,80112
Вена 16,36 в.д. 48,21 с.ш. 183 9,80860
Владивосток 131,53 в.д. 43,06 с.ш. 50 9,80424
Гринвич 0,0 в.д. 51,48 с.ш. 48 9,81188
Каир 31,28 в.д. 30,07 с.ш. 30 9,79317
Киев 30,30 в.д. 50,27 с.ш. 179 9,81054
Мадрид 3,69 в.д. 40,41 с.ш. 667 9,79981
Минск 27,55 в.д. 53,92 с.ш. 220 9,81347
Москва 37,61 в.д. 55,75 с.ш. 151 9,8154
Нью-Йорк 73,96 з.д. 40,81 с.ш. 38 9,80247
Одесса 30,73 в.д. 46,47 с.ш. 54 9.80735
Осло 10,72 в.д. 59,91 с.ш. 28 9,81927
Париж 2,34 в.д. 48,84 с.ш. 61 9,80943
Прага 14,39 в.д. 50,09 с.ш. 297 9,81014
Рим 12,99 в.д. 41,54 с.ш. 37 9,80312
Стокгольм 18,06 в.д. 59,34 с.ш. 45 9,81843
Токио 139,80 в.д. 35,71 с.ш. 18 9,79801
Читайте также:  Двигатель стирлинга работает от солнца

Исторически масса Земли была впервые определена Генри Кавендишем, исходя из известного ускорения свободного падения и радиуса Земли, и впервые измеренной им гравитационной постоянной.

Перегрузки

«Же» используется в космонавтике, авиации, автоспорте, а также вообще в технике как единица измерения перегрузок — увеличения веса тела, вызванного его движением с ускорением. Допустимое значение перегрузок для гражданских самолетов составляет 4,33 g [источник не указан 69 дней] . Обычный человек может выдерживать перегрузки до 5 g [источник не указан 769 дней] . Тренированные пилоты в антиперегрузочных костюмах могут переносить перегрузки до 9 g . Сопротивляемость к отрицательным, направленным вверх перегрузкам, значительно ниже. Обычно при −2. -3 g в глазах «краснеет» и человек тяжелее переносит такую перегрузку из-за прилива крови к голове.

В этом вопросе существует небольшая терминологическая путаница: к примеру, определение перегрузки выше даёт для стоящего неподвижно человека перегрузку в 0 g , но в таблице ниже этот же случай рассматривается как перегрузка в 1 g . Похожий казус происходит также и при измерении давления: мы говорим — давление 0, подразумевая давление в одну атмосферу вокруг нас, учёный скажет — давление 0, подразумевая полное отсутствие молекул в данном объёме.

Источник

Задачи с решениями

Определите ускорение силы тяжести на Солнце по следующим данным: расстояние от Земли до Солнца , угол, под которым Солнце видно с Земли, , период обращения Земли вокруг Солнца .

Ускорение силы тяжести на Солнце найдем, применив совместно закон всемирного тяготения и второй закон Ньютона для тела массой , находящегося вблизи поверхности Солнца:

Здесь – гравитационная постоянная, – масса Солнца, – радиус Солнца. Радиус Солнца определяется из геометрических соображений (рис. 1.10.1).

Рисунок 1.10.1.

Массу Солнца можно определить, применив второй закон Ньютона к орбитальному движению Земли:

Подставляя выражения для и в формулу для ускорения свободного падения , получим:

Источник

Ускорение свободного падения

Выберем тело, например, камень. Расположим его не некотором расстоянии от поверхности земли. Расстояние от центра Земли до камня равно \( R = \left( r + h \right) \), как представлено на рисунке 1.

Пусть на камень действует только сила, с которой Земля притягивает его, а других сил нет (нет, например, силы сопротивления воздуха).

Свободное падение – это движение тела под действием только одной силы — силы притяжения.

Из законов Ньютона известно: если на тело действует сила, то тело получает ускорение.

Ускорение свободного падения – это ускорение, с которым движется тело, когда на него действует только сила тяжести.

Формула для расчета ускорения свободного падения

Ускорение свободного падения можно посчитать по формуле:

\( g \left( \frac<\text<м>>> \right) \) (метры, деленные на секунду в квадрате) – ускорение свободного падения

\( M \left( \text <кг>\right) \) (килограммы) — масса планеты, которая притягивает

\( r \left( \text <м>\right) \) (метры) – радиус планеты

\( h \left( \text <м>\right) \) (метры) — расстояние от поверхности планеты до тела

\(G \ = 6<,>67 \cdot 10^ <-11>\left( \text <Н>\cdot \frac<\text<м>^2><\text<кг>^2> \right)\) — гравитационная постоянная

Интересные факты

У разных планет ускорение свободного падения различается.

  • чем больше масса планеты (или звезды), тем больше будет ускорение свободного падения рядом с такой планетой (или звездой);
  • чем дальше от планеты, тем меньше ускорение свободного падения;
  • на полюсах ускорение свободного падения больше, чем на экваторе планеты;

Все тела под действием силы тяжести падают с одинаковым ускорением! Это ускорение не зависит от массы тела.

Из житейского опыта мы знаем: чем больше площадь тела, тем больше времени ему нужно, чтобы упасть с какой-либо высоты. При своем падении тело опирается на воздух, поэтому, к примеру, лист бумаги будет падать дольше, чем шарик из пластилина, или гирька.

В безвоздушном пространстве опираться не на что. Поэтому гирька, лист бумаги, птичье перо и пластилиновый шарик, стартовав с одной и той же высоты одновременно, упадут на поверхность планеты тоже одновременно.

Ускорение свободного падения у поверхности некоторых небесных тел

  • у поверхности Земли \( g = 9<,>8 \left( \frac<\text<м>>> \right) \)
  • у поверхности Луны \( g = 1<,>68 \left( \frac<\text<м>>> \right) \)
  • у поверхности Марса \( g = 3<,>86 \left( \frac<\text<м>>> \right) \)
  • у поверхности Солнца \( g = 273<,>1 \left( \frac<\text<м>>> \right) \)
  • у поверхности Юпитера \( g = 23<,>95 \left( \frac<\text<м>>> \right) \)

Как вывести формулу ускорения свободного падения

Рассмотрим камень, находящийся на некотором расстоянии от Земли.

Земля и камень притягиваются, запишем закон притяжения между планетой и камнем

С другой стороны, у камня есть вес, так как на него действует сила тяжести.

Мы можем записать эти уравнения в виде системы.

\[ \begin \displaystyle F = G \cdot \frac<( r + h)^<2>> \\ \displaystyle F_<\text<тяж>> = m \cdot g \end \]

Земля и камень притягиваются, благодаря этому на камень действует сила тяжести. На языке математики это запишется так:

А если равны левые части уравнений, то будут равны и правые:

Масса \( m \) камня встречается в обеих частях уравнения. Поделим обе части уравнения на массу камня.

Источник

Космос, солнце и луна © 2023
Внимание! Информация, опубликованная на сайте, носит исключительно ознакомительный характер и не является рекомендацией к применению.

Adblock
detector