Ускорение свободного падения
О чем эта статья:
Каникулы со смыслом в Skysmart для детей 4-17 лет
Сила тяготения
В 1682 году Исаак Ньютон открыл закон всемирного тяготения. Он звучит так: все тела притягиваются друг к другу, сила всемирного тяготения прямо пропорциональна произведению масс тел и обратно пропорциональна квадрату расстояния между ними.
Формула силы тяготения согласно этому закону выглядит так:
Закон всемирного тяготения
F — сила тяготения [Н]
M — масса первого тела (часто планеты) [кг]
m — масса второго тела [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
Когда мы встаем на весы, стрелка отклоняется. Это происходит потому, что масса Земли очень большая, и сила тяготения буквально придавливает нас к поверхности. На более легкой Луне человек весит меньше в шесть раз.
Закон всемирного тяготения используют, чтобы вычислить силы взаимодействия между телами любой формы, если размеры тел значительно меньше расстояния между ними.
Если мы возьмем два шара, то для них можно использовать этот закон вне зависимости от расстояния между ними. За расстояние R между телами в этом случае принимается расстояние между центрами шаров.
Приливы и отливы существуют благодаря закону всемирного тяготения. В этом видео я рассказываю, что общего у приливов и прыщей. 🤓
Ускорение свободного падения
Чтобы математически верно и красиво прийти к ускорению свободного падения, нам необходимо сначала ввести понятие силы тяжести.
Сила тяжести — сила, с которой Земля притягивает все тела.
Сила тяжести
F = mg
F — сила тяжести [Н]
m — масса тела [кг]
g — ускорение свободного падения [м/с 2 ]
На планете Земля g = 9,8 м/с 2 , но подробнее об этом чуть позже. 😉
На первый взгляд сила тяжести очень похожа на вес тела. Действительно, в состоянии покоя на поверхности Земли формулы силы тяжести и веса идентичны. Вес тела в состоянии покоя численно равен массе тела, умноженной на ускорение свободного падения, разница состоит лишь в точке приложения силы.
Сила тяжести — это сила, с которой Земля действует на тело, а вес — сила, с которой тело действует на опору. Это значит, что у них будут разные точки приложения: у силы тяжести к центру масс тела, а у веса — к опоре.
Также важно понимать, что сила тяжести зависит исключительно от массы и планеты, на которой тело находится. А вес зависит еще и от ускорения, с которым движется тело или опора.
Например, в лифте вес зависит от того, куда и с каким ускорением двигаются его пассажиры. А силе тяжести все равно, куда и что движется — она не зависит от внешних факторов.
На второй взгляд сила тяжести очень похожа на силу тяготения. В обоих случаях мы имеем дело с притяжением — значит, можем сказать, что это одно и то же. Практически.
Мы можем сказать, что это одно и то же, если речь идет о Земле и каком-то предмете, который к этой планете притягивается. Тогда мы можем даже приравнять эти силы и выразить формулу для ускорения свободного падения:
Приравниваем правые части:
Делим на массу левую и правую части:
Это и будет формула ускорения свободного падения. Ускорение свободного падения для каждой планеты уникально.
Формула ускорения свободного падения
g — ускорение свободного падения [м/с 2 ]
M — масса планеты [кг]
R — расстояние между телами [м]
G — гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2
Ускорение свободного падения характеризует то, как быстро увеличивается скорость тела при свободном падении.
Свободное падение — это ускоренное движение тела в безвоздушном пространстве, при котором на тело действует только сила тяжести.
Ускорение свободного падения на разных планетах
Выше мы уже вывели формулу ускорения свободного падения. Давайте попробуем рассчитать ускорение свободного падения на планете Земля.
Для этого нам понадобятся следующие величины:
- Гравитационная постоянная
G = 6,67 × 10 -11 м 3 ·кг -1 ·с -2 - Масса Земли
M = 5,97 × 10 24 кг - Радиус Земли
R = 6371 км
Подставим значения в формулу:
Есть один нюанс: в значении ускорения свободного падения для Земли очень много знаков после запятой. В школе обычно дают то же значение, что мы указали выше: g = 9,81 м/с 2 . В экзаменах ОГЭ и ЕГЭ в справочных данных дают g = 10 м/с 2 .
И кому же верить?
Все просто: для кого решается задача, тот и главный. В экзаменах берем g = 10 м/с 2 , в школе при решении задач (если в условии задачи не написано что-то другое) берем g = 9,8 м/с 2 .
Ниже представлена таблица ускорений свободного падения и других характеристик для планет Солнечной системы, карликовых планет и Солнца.
Небесное тело
Ускорение свободного падения, м/с 2
Диаметр, км
Расстояние до Солнца, миллионы км
Масса, кг
Соотношение с массой Земли
Источник
Каким стало бы ускорение свободного падения на поверхности Солнца?
Ускорение свободного падения зависит как от массы так и от радиуса небесного тела. g=GM/R^2, для солнца g=6,672*10^(-11)*1.989*10^30/48,4402*10^16=273,8м/с^2. масса Солнца в 333 000 раза больше массы Земли. 9,8*333 000=326340м/с^2. Ускорение свободного падения на Солнце 273.8 м/с^2
1 9 · Хороший ответ
4 9 · Хороший ответ
«Обожаю» анонимные вопросы по физике. Интересно, кто их задаёт.
Вспоминается анекдот, когда на Солнце отправили космонавтов, а чтобы они не сгорели — отправились туда ночью. Примерно такой же уровень) А вообще, домашнее задание лучше выполнять самому.
1 0 · Хороший ответ
Наскольку я помню — лень пересчитывать — на уровне фотосферы Солнца (его видимой » поверхности») ускорение свободного ппдения составляет 28 g, то есть около 280 м/сек^2. Вторая космическая — 617 км/сек.
8 · Хороший ответ
вот загнул! вторая космич скорость-8 с чем-то км в сек!
1 · Хороший ответ
Ну да. Если бы не испарились бы,только лишь косувшись солнечной фотосферы
Смотря что понимать под термином «поверхность Солнца». Если то место где его нет не в коей мере, то это место где-то за пределами орбиты Плутона.
3 · Хороший ответ
кстати, кто не знает — центр масс Солнечной системы не в центре Солнца.
так что у Солнца тоже есть своя «орбита».
Солнце вообще-то «слоёное», часть энергии черпает из Гравитационного сжатия — до открытия термоядерных реакций (теоретического) так и считали — мол Солнце большое, само себя сжимает и при этом греется до температуры 6000 К.
Источник