Ускоренное расширение Вселенной
Авг 17
Ускоренное расширение Вселенной
Состав Вселенной по данным WMAP (это космический аппарат НАСА, предназначенный для изучения реликтового излучения, образовавшегося в результате Большого взрыва). 74 % — тёмная энергия, 22 % тёмная материя, 3,6 % межгалактический газ, 0,4 % — наблюдаемые звезды (Nemets79).
Возможные сценарии эволюции Вселенной.
Наконец, последнее большое открытие – ускоренное расширение Вселенной. Если взять любую научно-популярную книжку о космологии, изданную до 2000 года, то, говоря о будущем Вселенной, авторы всегда обсуждали три сценария. Когда я преподавал в школе (с 1993 по 2002 год), то до 1998 года я рассказывал примерно то же самое. Итак, Вселенная начала расширяться, но самая главная действующая во Вселенной в большом масштабе сила (гравитация) стремится остановить это расширение. Дальше всё зависит от того, насколько много вещества, массы, насколько велика средняя плотность вещества. Если она больше некоторой критической, то всё это вещество схлопнется обратно, и, как это замечательно написано у Дугласа Адамса, получится обыкновенный gnab-gib, то есть big-bang наоборот. Если плотности не хватит, Вселенная будет расширяться всё медленнее и медленнее, но будет делать это всегда. Ну и, наконец, есть психологически приятный для нас промежуточный режим, когда расширение идёт всё медленнее и медленнее, и выходит на что-то постоянное. Мы подсознательно хотим какой-то стабильности в будущем, в том числе и в будущем нашей Вселенной. Такие три варианта всегда в основном рассматривались в популярной литературе. На самом деле космологи в своих книжках и статьях рассматривали и четвёртый вариант. И не только потому, что ключевой ингредиент этого варианта из совершенно других соображений придумал Эйнштейн в 1917 году, 100 лет назад. Во Вселенной может быть нечто, что заставляет её расширяться всё быстрее и быстрее. То, что работает «как будто» антигравитация. В Общей теории относительности никакой настоящей антигравитации нет. Но вы можете добавить нечто – какую-то среду, поле и ещё что-то, что обладает отрицательным давлением. И тогда в Общей теории относительности это будет приводить к кажущейся антигравитации. Приводить к тому, что объекты будут отталкиваться друг от друга, будучи погруженным в эту среду. Даже если объекты не погружать, у вас метрика будет расширяющейся. Так вот, неожиданно, в 1998 году две группы астрономов открыли это ускоренное расширение Вселенной. Они наблюдали сверхновые особого типа. Это взрывы белых карликов. Белый карлик – это то, что получится из Солнца, такой очень стабильный шарик. Но, если мы будем увеличивать массу белого карлика, то рано или поздно он взорвётся. Он взрывается, добравшись до некоторой критической массы, и поэтому такие взрывы (они называются взрывы сверхновых типа Ia) очень похожи друг на друга. Иногда о них говорят, что это «стандартные свечи». На самом деле взрыв происходит не точно на критической массе. Представьте себе: белый карлик и нормальная звезда. Вещество с нормальной звезды постепенно перетекает на белый карлик, у него растёт масса, она вырастает до критической и происходит взрыв. Тут всё более-менее должно быть стандартно. Но большая часть взрывов происходит по другой причине. У вас есть два белых карлика в системе, и они сливаются. Их масса может оказаться точно равна критической, но, скорее всего, она будет немного больше, а в некоторых случаях – почти в два раза. И поэтому взрывы разные. Но люди научились по характеру взрыва, по данным наблюдений рассчитывать светимость. Благодаря, в первую очередь, орбитальному телескопу имени Хаббла, удалось наблюдать сверхновые Ia на очень больших расстояниях. Это очень мощные взрывы, потому, что белый карлик при этом разрушаются целиком. Происходит глобальный термоядерный взрыв. Кстати, бóльшая часть железа, с которым мы имеем дело в повседневной жизни, родилась именно в результате взрыва в таких белых карликах. Так вот, наблюдая очень мощные взрывы на больших расстояниях, люди научились независимо определять расстояние до далёких галактик. С одной стороны, у нас есть красное смещение, и мы по космологической модели можем рассчитать это расстояние. А теперь мы его измеряем напрямую и сравниваем. И оказалось, что далёкие галактики находятся чуть-чуть дальше, чем им положено. То есть что-то в теории не так, нужно подкрутить какие-то параметры. И, когда попробовали это сделать, используя доступный космологический инструментарий, то оказалось, что надо добавить в уравнения тот самый лямбда-член, который ввёл Эйнштейн 100 лет назад, это нужно для того, чтобы Вселенную ещё немножко растянуть. И когда посчитали, сколько нужно вот этой необычной среды, оказалось что сейчас, в наше время, она доминирует. Результат был удивительным, сводится он сейчас к тому, что около 70% полной плотности нашей Вселенной связано именно с вот этой загадочной средой, которую назвали тёмная энергия. Энергия – потому, что её везде одинаково. Тёмное вещество можно «собрать в кучу», а тёмная энергия везде одинакова. И поскольку открытие было очень важное, его надо было перепроверить. Его довольно быстро перепроверили совершенно разными способами (не только по сверхновым), и поэтому спустя всего лишь несколько лет после публикации статьи, за открытие ускоренного расширения Вселенной была вручена Нобелевская премия. Строго говоря, мы не знаем, почему происходит это ускоренное расширение. Мы описываем, его вводя тёмную энергию. Мы не знаем, что это такое – то ли свойство вакуума, то ли какое-то новое физическое поле, люди над этим работают, ответа нет, это очень важный вопрос, очень интересная физическая загадка, и, скорее всего, не только астрофизическая, но и физическая. Но Вселенная, как минимум последние несколько миллиардов лет, действительно расширяется ускоренно, это очень надёжные данные. Это переписывает нашу картину мира, это меняет наше представление о будущем Вселенной.
Это – глава из стенгазеты, выпущенной благотворительным проектом «Коротко и ясно о самом интересном». Нажмите на миниатюру газеты ниже и читайте остальные статьи по интересующей вас тематике. Спасибо!
Материал выпуска любезно предоставил Сергей Борисович Попов – астрофизик, доктор физико-математических наук, профессор Российской академии наук, ведущий научный сотрудник Государственного астрономического института им. Штернберга Московского государственного университета, лауреат нескольких престижных премий в области науки и просвещения. Надеемся, что знакомство с выпуском будет полезно и школьникам, и родителям, и учителям – особенно сейчас, когда астрономия снова вошла в список обязательных школьных предметов (приказ №506 Минобрнауки от 7 июня 2017 года).
Все стенгазеты, изданные нашим благотворительным проектом «Коротко и ясно о самом интересном», ждут вас на сайте к-я.рф. Есть также группа вконтакте и ветка на сайте Питерских родителей Литтван, где мы обсуждаем выход новых газет. Любой желающий может бесплатно получать наши газеты в местах раздачи в Петербурге.
Источник
Ускоряющееся расширение Вселенной — Accelerating expansion of the universe
Категория
Астрономический портал
Наблюдения показывают , что расширение по Вселенной ускоряется, таким образом, что скорость , при которой далекой галактике отступает от наблюдателя непрерывно увеличивается со временем.
Ускоренное расширение было обнаружено в 1998 году двумя независимыми проектами, Проектом по космологии сверхновых звезд и группой по поиску сверхновых с высоким Z , которые оба использовали далекие сверхновые типа Ia для измерения ускорения. Идея заключалась в том, что, поскольку сверхновые типа Ia имеют почти такую же внутреннюю яркость ( стандартная свеча ), и поскольку объекты, находящиеся дальше, кажутся более тусклыми, мы можем использовать наблюдаемую яркость этих сверхновых, чтобы измерить расстояние до них. Затем расстояние можно сравнить с космологическим красным смещением сверхновой , которое измеряет, насколько Вселенная расширилась с момента возникновения сверхновой. Неожиданным результатом стало то, что объекты во Вселенной удаляются друг от друга с ускоренной скоростью. В то время космологи ожидали, что скорость удаления всегда будет замедляться из-за гравитационного притяжения материи во Вселенной. Три члена этих двух групп впоследствии были удостоены Нобелевских премий за свое открытие. Подтверждающие доказательства были найдены в барионных акустических колебаниях и при анализе скоплений галактик.
Считается, что ускоренное расширение Вселенной началось с тех пор, как Вселенная вступила в эру доминирования темной энергии примерно 4 миллиарда лет назад. В рамках общей теории относительности ускоренное расширение можно объяснить положительным значением космологической постоянной Λ , эквивалентным наличию положительной энергии вакуума , получившей название « темная энергия ». Хотя есть альтернативные возможные объяснения, описание, предполагающее темную энергию (положительное Λ ), используется в текущей стандартной модели космологии , которая также включает холодную темную материю (CDM) и известна как модель Lambda-CDM .
СОДЕРЖАНИЕ
Задний план
За десятилетия, прошедшие с момента обнаружения космического микроволнового фона (CMB) в 1965 году, модель Большого взрыва стала наиболее распространенной моделью, объясняющей эволюцию нашей Вселенной. Уравнение Фридмана определяет, как энергия Вселенной управляет ее расширением.
ЧАС 2 знак равно ( а ˙ а ) 2 знак равно 8 π грамм 3 ρ — κ c 2 а 2 <\ displaystyle H ^ <2>= <\ left (<\ frac <\ dot > > \ right)> ^ <2>= <\ frac <8 <\ pi>G> <3>> \ rho — <\ frac <<\ kappa>c ^ <2>> >>>
где κ представляет собой кривизну Вселенной , a ( t ) — масштабный фактор , ρ — полная плотность энергии Вселенной, а H — параметр Хаббла .
ρ c знак равно 3 ЧАС 2 8 π грамм <\ displaystyle \ rho _
Ω знак равно ρ ρ c <\ Displaystyle \ Omega = <\ гидроразрыва <\ rho><\ rho _
Затем мы можем переписать параметр Хаббла как
ЧАС ( а ) знак равно ЧАС 0 Ω k а — 2 + Ω м а — 3 + Ω р а — 4 + Ω D E а — 3 ( 1 + ш ) <\ displaystyle H (a) = H_ <0> <\ sqrt <<\ Omega _
где четыре предполагаемых в настоящее время вкладчика в плотность энергии Вселенной — кривизна , материя , излучение и темная энергия . Каждый из компонентов уменьшается с расширением Вселенной (увеличение масштабного фактора), за исключением, возможно, члена темной энергии. Именно значения этих космологических параметров используют физики для определения ускорения Вселенной.
Уравнение ускорения описывает эволюцию масштабного фактора во времени.
а ¨ а знак равно — 4 π грамм 3 ( ρ + 3 п c 2 ) <\ displaystyle <\ frac <\ ddot > > = — <\ frac <4 <\ pi>G> <3>> \ left (\ rho + <\ frac <3P>
где давление P определяется выбранной космологической моделью. (см. пояснительные модели ниже)
Одно время физики были настолько уверены в замедлении расширения Вселенной, что ввели так называемый параметр замедления q 0 . Текущие наблюдения показывают, что этот параметр замедления отрицательный.
Отношение к инфляции
Согласно теории космической инфляции , очень ранняя Вселенная пережила период очень быстрого квазиэкспоненциального расширения. Хотя временной масштаб для этого периода расширения был намного короче, чем у текущего расширения, это был период ускоренного расширения с некоторым сходством с текущей эпохой.
Техническое определение
Определение «ускорение расширения» является то , что вторая производная по времени космического масштабного коэффициента, является положительной, что эквивалентно параметром замедления , , будучи отрицательным. Однако обратите внимание, что это не означает, что параметр Хаббла увеличивается со временем. Поскольку параметр Хаббла определяется как , из определений следует, что производная параметра Хаббла определяется выражением а ¨ <\ Displaystyle <\ ddot <а>>> q <\ displaystyle q>
ЧАС ( т ) ≡ а ˙ ( т ) / а ( т ) <\ Displaystyle Н (т) \ экв <\ точка <а>> (т) / а (т)>
d ЧАС d т знак равно — ЧАС 2 ( 1 + q ) <\ displaystyle <\ frac
поэтому параметр Хаббла со временем уменьшается, если только . Предпочтение отдается наблюдению , что подразумевает, что положительно, но отрицательно. По сути, это означает, что космическая скорость удаления любой конкретной галактики увеличивается со временем, но ее соотношение скорость / расстояние все еще уменьшается; таким образом, различные галактики, расширяющиеся по сфере фиксированного радиуса, в более поздние времена пересекают сферу медленнее. q — 1 <\ displaystyle q q ≈ — 0,55 <\ displaystyle q \ приблизительно -0,55>
а ¨ <\ Displaystyle <\ ddot <а>>>
d ЧАС / d т <\ displaystyle dH / dt>
Как видно из выше , что в случае «нулевого ускорения / замедления» соответствует является линейной функцией , , , и . а ( т ) <\ Displaystyle а (т)> т <\ displaystyle t>
q знак равно 0 <\ displaystyle q = 0>
а ˙ знак равно c о п s т <\ displaystyle <\ dot > = const>
ЧАС ( т ) знак равно 1 / т <\ Displaystyle Н (т) = 1 / т>
Доказательства ускорения
Чтобы узнать о скорости расширения Вселенной, мы смотрим на соотношение звездных величин и красного смещения астрономических объектов с использованием стандартных свечей или на их соотношение расстояние-красное смещение с использованием стандартных линейок . Мы также можем посмотреть на рост крупномасштабной структуры и обнаружить, что наблюдаемые значения космологических параметров лучше всего описываются моделями, которые включают ускоряющееся расширение.
Наблюдение за сверхновой
В 1998 году первое свидетельство ускорения было получено при наблюдении сверхновых типа Ia , которые представляют собой взрывающиеся белые карлики , превысившие предел своей устойчивости . Поскольку все они имеют одинаковую массу, их собственная светимость может быть стандартизирована. Для обнаружения сверхновых используется повторное отображение выбранных областей неба, затем последующие наблюдения дают их пиковую яркость, которая конвертируется в величину, известную как расстояние светимости (подробности см. В разделе « Измерения расстояний в космологии» ). Спектральные линии их света можно использовать для определения их красного смещения .
Для сверхновых с красным смещением менее 0,1 или временем прохождения света менее 10 процентов возраста Вселенной это дает почти линейную зависимость между расстоянием и красным смещением в соответствии с законом Хаббла . На больших расстояниях, поскольку скорость расширения Вселенной менялась со временем, соотношение расстояние-красное смещение отклоняется от линейности, и это отклонение зависит от того, как скорость расширения изменялась с течением времени. Полный расчет требует компьютерного интегрирования уравнения Фридмана, но простой вывод можно дать следующим образом: красное смещение z напрямую дает космический масштабный коэффициент в момент взрыва сверхновой.
а ( т ) знак равно 1 1 + z <\ Displaystyle а (т) = <\ гидроразрыва <1><1 + z>>>
Таким образом, сверхновая с измеренным красным смещением z = 0,5 означает, что Вселенная была 1 / 1 + 0,5 знак равно 2 / 3 нынешнего размера, когда взорвалась сверхновая. В случае ускоренного расширения, положительное значение было меньше в прошлом, чем сегодня. Таким образом, ускоряющейся Вселенной потребовалось больше времени, чтобы расшириться от 2/3 до 1 раза от ее нынешнего размера, по сравнению с неускоряющейся Вселенной с постоянным и таким же современным значением постоянной Хаббла. Это приводит к большему времени прохождения света, большему расстоянию и более слабым сверхновым, что соответствует реальным наблюдениям. Адам Рисс и др. обнаружили, что «расстояния до SNe Ia с большим красным смещением были в среднем на 10–15% больше, чем ожидалось во Вселенной с низкой плотностью массы Ω M = 0,2 без космологической постоянной». Это означает, что измеренные расстояния с большим красным смещением были слишком большими по сравнению с ближайшими расстояниями для замедляющейся Вселенной. а ¨ <\ Displaystyle <\ ddot <а>>> а ˙ <\ displaystyle <\ dot >>
а ˙ <\ displaystyle <\ dot >>
Барионные акустические колебания
В ранней Вселенной до того, как произошла рекомбинация и разделение , фотоны и материя существовали в первичной плазме . Точки с более высокой плотностью в фотонно-барионной плазме сжимались под действием силы тяжести до тех пор, пока давление не становилось слишком большим, и они снова расширялись. Это сжатие и расширение создавало в плазме вибрации, аналогичные звуковым волнам . Поскольку темная материя взаимодействует только гравитационно, она остается в центре звуковой волны, источнике первоначальной сверхплотности. Когда произошло разделение, примерно через 380 000 лет после Большого взрыва, фотоны отделились от материи и смогли свободно течь через Вселенную, создавая космический микроволновый фон, каким мы его знаем. Это оставило оболочки барионной материи на фиксированном радиусе от сверхплотности темной материи, на расстоянии, известном как звуковой горизонт. Со временем, когда Вселенная расширилась, именно при этих анизотропии плотности материи начали формироваться галактики. Таким образом, глядя на расстояния, на которых галактики с разным красным смещением стремятся к скоплению, можно определить расстояние стандартного углового диаметра и использовать его для сравнения с расстояниями, предсказанными различными космологическими моделями.
Были обнаружены пики в корреляционной функции (вероятность того, что две галактики будут находиться на определенном расстоянии друг от друга) при 100 ч -1 Мпк (где h — безразмерная постоянная Хаббла ), что указывает на то, что это размер звукового горизонта сегодня, и сравнивая это со звуковым горизонтом во время разделения (используя CMB), мы можем подтвердить ускоренное расширение Вселенной.
Скопления галактик
Измерение функций масс скоплений галактик , которые описывают плотность скоплений выше пороговой массы, также свидетельствует о темной энергии. Путем сравнения этих массовых функций при больших и малых красных смещениях с предсказанными различными космологическими моделями, получены значения w и Ω m , которые подтверждают низкую плотность вещества и ненулевое количество темной энергии.
Возраст вселенной
Имея космологическую модель с определенными значениями космологических параметров плотности, можно интегрировать уравнения Фридмана и получить возраст Вселенной.
т 0 знак равно ∫ 0 1 d а а ˙ <\ displaystyle t_ <0>= \ int _ <0>^ <1> <\ frac
Сравнивая это с фактическими измеренными значениями космологических параметров, мы можем подтвердить справедливость модели, которая ускоряется сейчас и имела более медленное расширение в прошлом.
Гравитационные волны как стандартные сирены
Недавние открытия гравитационных волн с помощью LIGO и VIRGO не только подтвердили предсказания Эйнштейна, но и открыли новое окно во Вселенную. Эти гравитационные волны могут работать как стандартные сирены для измерения скорости расширения Вселенной. Abbot et al. В 2017 году значение постоянной Хаббла составило примерно 70 километров в секунду на мегапарсек. Амплитуды деформации h зависят от масс объектов, вызывающих волны, расстояния от точки наблюдения и частоты обнаружения гравитационных волн. Соответствующие меры расстояния зависят от космологических параметров, таких как постоянная Хаббла для близлежащих объектов, и будут зависеть от других космологических параметров, таких как плотность темной энергии, плотность материи и т. Д. Для удаленных источников.
Пояснительные модели
Темная энергия
Самым важным свойством темной энергии является то, что она имеет отрицательное давление (отталкивающее действие), которое относительно равномерно распределяется в пространстве.
п знак равно ш c 2 ρ <\ displaystyle P = wc ^ <2>\ rho>
где c — скорость света, а ρ — плотность энергии. Различные теории темной энергии предполагают разные значения w , причем w 1 / 3 для космического ускорения (это приводит к положительному значению ä в уравнении ускорения выше).
Самое простое объяснение темной энергии состоит в том, что это космологическая постоянная или энергия вакуума ; в этом случае w = −1 . Это приводит к модели лямбда-CDM , которая с 2003 года по настоящее время известна как Стандартная модель космологии, поскольку это простейшая модель, хорошо согласующаяся с множеством недавних наблюдений. Riess et al. обнаружили, что их результаты по наблюдениям сверхновых отдают предпочтение расширяющимся моделям с положительной космологической постоянной ( Ω λ > 0 ) и текущим ускоренным расширением ( q 0 ).
Фантомная энергия
Текущие наблюдения допускают возможность космологической модели, содержащей компонент темной энергии с уравнением состояния w . Эта фантомная плотность энергии станет бесконечной за конечное время, вызывая такое огромное гравитационное отталкивание, что Вселенная потеряет всю структуру и закончится Большим разрывом . Например, для w = — 3 / 2 и H 0 = 70 км · с −1 · Мпк −1 , время, оставшееся до того, как Вселенная закончится в этом Большом разломе, составляет 22 миллиарда лет.
Альтернативные теории
Есть много альтернативных объяснений ускоряющейся Вселенной. Некоторые примеры — квинтэссенция , предложенная форма темной энергии с непостоянным уравнением состояния, плотность которой со временем уменьшается. Отрицательная масса космология не предполагает , что плотность массы Вселенной положительна (как это сделано в наблюдениях сверхновых), и вместо этого находит отрицательную космологическую постоянную. Бритва Оккама также предполагает, что это «более экономная гипотеза». Темная жидкость — альтернативное объяснение ускоренного расширения, которое пытается объединить темную материю и темную энергию в единую структуру. В качестве альтернативы, некоторые авторы утверждали, что ускоренное расширение Вселенной может быть связано с отталкивающим гравитационным взаимодействием антивещества или отклонением законов гравитации от общей теории относительности, таких как массивная гравитация , что означает, что гравитоны сами имеют массу. Измерение скорости гравитации с помощью гравитационного волнового события GW170817 исключило многие модифицированные теории гравитации в качестве альтернативного объяснения темной энергии.
Другой тип модели, гипотеза обратной реакции, была предложена космологом Сикси Рясяненом: скорость расширения неоднородна, но мы находимся в области, где расширение происходит быстрее, чем фон. Неоднородности в ранней Вселенной вызывают образование стенок и пузырей, причем внутри пузыря содержится меньше вещества, чем в среднем. Согласно общей теории относительности, пространство менее искривлено, чем стены, и поэтому кажется, что оно имеет больший объем и более высокую скорость расширения. В более плотных областях расширение замедляется более сильным гравитационным притяжением. Следовательно, внутренний коллапс более плотных областей выглядит так же, как ускоренное расширение пузырьков, что приводит нас к выводу, что Вселенная подвергается ускоренному расширению. Преимущество в том, что для этого не требуется никакой новой физики, такой как темная энергия. Рясянен не считает эту модель вероятной, но без каких-либо фальсификаций она должна оставаться возможной. Для работы потребуются довольно большие колебания плотности (20%).
Последняя возможность состоит в том, что темная энергия — это иллюзия, вызванная некоторым смещением в измерениях. Например, если мы находимся в более пустой, чем в среднем, области пространства, наблюдаемая скорость космического расширения может быть ошибочно принята за изменение во времени или за ускорение. Другой подход использует космологическое расширение принципа эквивалентности, чтобы показать, как может казаться, что пространство расширяется быстрее в пустотах, окружающих наше локальное скопление. Будучи слабыми, такие эффекты, совокупно рассматриваемые в течение миллиардов лет, могут стать значительными, создавая иллюзию космического ускорения и создавая впечатление, будто мы живем в пузыре Хаббла . Еще одна возможность состоит в том, что ускоренное расширение Вселенной — это иллюзия, вызванная нашим относительным движением по отношению к остальной Вселенной, или что использованный размер выборки сверхновых не был достаточно большим.
Теории последствий для Вселенной
По мере расширения Вселенной плотность излучения и обычной темной материи снижается быстрее, чем плотность темной энергии (см. Уравнение состояния ), и, в конечном итоге, темная энергия доминирует. В частности, когда масштаб Вселенной удваивается, плотность материи уменьшается в 8 раз, но плотность темной энергии почти не меняется (она точно постоянна, если темная энергия является космологической постоянной ).
В моделях, где темная энергия является космологической постоянной, Вселенная будет экспоненциально расширяться со временем в далеком будущем, приближаясь к Вселенной де Ситтера . Это в конечном итоге приведет к исчезновению всех свидетельств Большого взрыва, поскольку космический микроволновый фон смещается в сторону более низких интенсивностей и длин волн. В конце концов, его частота станет достаточно низкой, чтобы он был поглощен межзвездной средой и, таким образом, был скрыт от любого наблюдателя в галактике. Это произойдет, когда возраст Вселенной будет меньше чем в 50 раз больше своего нынешнего возраста, что приведет к концу космологии в том виде, в каком мы ее знаем, поскольку далекая Вселенная потемнеет.
Постоянно расширяющаяся Вселенная с ненулевой космологической постоянной имеет плотность массы, уменьшающуюся со временем. В таком сценарии текущее понимание состоит в том, что вся материя будет ионизироваться и распадаться на изолированные стабильные частицы, такие как электроны и нейтрино , при этом все сложные структуры рассеиваются. Этот сценарий известен как « тепловая смерть Вселенной ».
Источник
➤ Adblockdetector