почему при наблюдениях Луны и планет в телескоп используют увелечение не более 500-600 раз?
Потому что в телескопе главное разрешение. А не увеличение. Аналог — картинка на мониторе. возьми картинку 100 на 100 пикселей и увеличь в 100 раз, ничего не увидишь. Но производители тех телескопов которые продаются в магазине пользуются тем что обычные люди (которые не астрономы) этого не знают поэтому делают телескопы диаметром в дюйм и хрен знает каким увеличением которое в результате дает размытое пятно. разрешение зависит от диаметра телескопа (чем больше диаметр тем больше информации\света телескоп собирает, от качества оптики, ну и от турбулентности в атмосфере) это то что вы возможно хотели знать.
Прямой оитвет на вопрос — они используют и большее увеличение если их телескопы имеют достаточное разрешение. ах да. если они не смотрят на планету а просто «фотографируют» то им и необязательно сильно увеличивать это и потом можно. при просмотре. я так помню.
Увеличение телескопа есть отношение фокусного расстояния объектива к фокусному расстоянию окуляра. Окуляры, конечно же, можно менять, получая, таким образом, некоторый диапазон увеличений. Теоретическим пределом для максимального увеличения принято считать число, равное удвоенному значению апертуры телескопа в миллиметрах. Можно даже написать в виде формулы «Максимальное увеличение=2*D». То есть для телескопа с диаметром объектива 90 мм, максимальное увеличение составляет 180 крат. На практике же в некоторых случаях этот предел может быть превышен, причём превышен существенно. Но это «увеличение увеличения» не приводит к увеличению количества наблюдаемых деталей на поверхности планеты, например, а приводит лишь к увеличению размера этих деталей. Но, следует отметить, что изображение при подъёме увеличений начинает вырождаться, яркость его падает, фокусировка становится всё более затруднённой. Так что, в первом приближении, превышение этого самого 2*D срабатывает только по ярким объектам, например, Луне.
Можно также сказать, что наряду с максимальным увеличением существует, если можно так выразиться, «максимальное комфортное» увеличение. Оно всегда разное, так как зависит не только от параметров оптики и механики телескопа, но и от наблюдателя. Однако запомните, что максимальное комфортное увеличение у короткофокусных телескопов меньше, чем у длиннофокусных (при равной апертуре, естественно) . Не следует забывать и о минимальном увеличении. Хотя оно обычно не интересует новичка, и, пожалуй, об этом параметре мы поговорим в подпункте, посвященном выбору дополнительных окуляров. Резюмируя сказанное: если Вы видите надпись на коробке телескопа «Увеличение 575х» (или другую столь большую цифру) , знайте, что это, скорее, недобросовестная реклама, рассчитанная на несведущего покупателя, чем реальный параметр. В реальности же, кроме пресловутых 2D, существенное влияние на изображение оказывает атмосфера, а точнее, её непрозрачность и нестабильность. Из-за того, что мы наблюдаем со дна воздушного океана, максимальное полезное увеличение редко может превышать 250-300 крат (ну, за исключением, пожалуй, наблюдений Луны и двойных звезд) .
Источник
Применимость увеличений в астрономическом телескопе
Увеличение является наиболее неправильно понятым параметром телескопов, причем не только новичками. Новые пользователи телескопа часто предполагают, что большее увеличение дает лучший результат. Но они быстро узнают, что это редко так, и даже наоборот, более низкая кратность почти всегда дает лучшее изображение.
Планетные наблюдения, Сочи, 600 метров над уровнем моря. (На фото: К. Радченко)
Почему большое увеличение не всегда хорошо?
Есть несколько причин, по которым большое увеличение не может быть предпочтительным. Обычное предположение новых астрономов-любителей состоит в том, что, поскольку мы пытаемся наблюдать объекты, которые находятся очень далеко, мы хотим увеличить их немного, чтобы приблизить их. Но большинство объектов на ночном небе, несмотря на то, что они очень далеко, кажутся очень большими. Например, туманность Ориона выглядит более чем в два раза больше полной Луны, а галактика Андромеды — в шесть раз больше. Хотя Андромеда находится в 70 триллионах раз дальше Луны, она также и в 420 триллионов раз больше нашей спутницы! Большое увеличение дает небольшое поле зрения, а это означает, что большой объект может не вписываться в поле зрения телескопа.
Вид галактики в Андромеде: справа при большем увеличении, но всю галактику Андромеды можно увидеть только в режиме малой кратности — слева
Еще одна причина, по которой увеличение не стоит сильно увеличивать, связана с яркостью изображения. Неудачный закон физики гласит, что когда увеличение удваивается, изображение становится в четыре раза менее ярким. Большинство небесных объектов очень слабые, поэтому делать их тусклее, чем необходимо, не рекомендуется. Вот почему самая важная вещь в телескопе — это апертура (диаметр объектива), а не увеличение. Яркость является ключом к астрономическим наблюдениям.
Изображение туманности Ориона: справа увеличено, но также и более тускло, чем при малом увеличении — слева
Некоторые объекты, однако, маленькие и яркие и поэтому хорошо выдерживают большие увеличения. Планеты как раз попадают в эту категорию. Юпитер, несмотря на то, что является самой большой планетой в нашей Солнечной системе, находится достаточно далеко (644 миллиона км.), и виден как 1/36 размера полной Луны. Тем не менее, Юпитер ярче любой звезды на небе. Столь большие увеличения хорошо работают на Юпитере, Сатурне, Марсе и других ярких объектах, таких как Луна.
Сколько стоит слишком много?
Так почему бы просто не увеличить Юпитер столько, сколько мы хотим? Если в 200х он выглядит лучше, чем в 50х, разве не должен он выглядеть лучше в 600х или 1000х? Нет, и есть две причины, почему.
Первая связана с самим телескопом. Яркость объекта зависит от размера телескопа и увеличения. Чем больше света вы можете собрать (чем больше площадь объектива, которая зависит от его диаметра), тем больше вы можете увеличить кратность инструмента, прежде чем изображение станет слишком тусклым. Кроме того, разрешение, или мельчайшие детали, которые можно увидеть, также зависит от размера диаметра объектива. Это означает, что существует теоретический верхний предел того, насколько телескоп может увеличивать, прежде чем изображение станет блеклым и слишком размытым. Это определяется очень простым уравнением:
Максимальное увеличение телескопа = D х 2
D — диаметр объектива в мм
Например, 75мм телескоп имеет максимальное теоретическое увеличение 150x. 150мм телескоп может увеличивать в 300 раз, а 200мм телескоп — в 400 раз. Однако это строго теоретический максимум, потому что основным ограничивающим фактором является не сам телескоп.
Обычным ограничивающим фактором при максимальном увеличении является атмосфера Земли. Так как мы должны смотреть через толщу атмосферы, чтобы увидеть что-либо в космосе, то чем больше мы увеличиваем небесные объекты, на которые мы смотрим, тем больше мы увеличиваем негативное влияние атмосферы. И если атмосфера турбулентная, эта турбулентность будет иметь тенденцию размывать изображение. Устойчивость атмосферы называется условиями наблюдения. Когда видимость хорошая, атмосфера является устойчивой, и изображение выглядит очень четким. Когда видимость плохая, атмосфера очень турбулентная, и изображение выглядит размытым. В ночи плохой видимости даже хороший телескоп не может дать больше деталей в изображении.
Юпитер в отличных условиях видимости
Юпитер в плохих условия видимости
Реальный верхний предел увеличения, независимо от того, насколько велик телескоп, в среднем за ночь будет примерно 250х — 300х. В плохую ночь вы не сможете превысить 100-150x. Обратите внимание, что условия наблюдения и прозрачность (чистота атмосферы) не одинаковы. Часто очень темные, ясные ночи будут иметь плохие условия видимости, в то время как туманные ночи с низкой прозрачностью часто дают прекрасную видимость. Вызвано это тем, что в верхних слоях атмосферы стихают вихревые потоки, портящие картинку.
Хорошо, если слишком много плохо, а как насчет низкого увеличения?
Меньшее увеличение дает более широкое поле зрения и более яркое изображение. Однако так же, как существует такая вещь, как слишком большое увеличение, существует и такая вещь, как минимальное увеличение. Минимальное увеличение определяется выходным зрачком системы телескопа. Выходной зрачок — это диаметр луча света, выходящего из окуляра. Чем больше этот луч, тем ярче будет изображение. По крайней мере, до той поры, где диаметр выходного зрачка телескопа не будет превышать диаметра зрачка глаза наблюдателя.
Разный размер выходных зрачков. Большой выходной зрачок справа шире зрачка глаза наблюдателя.
Если выходной зрачок шире, чем зрачок глаза наблюдателя, пропадает яркость картинки. Эффект точно такой же, как ограничение апертуры телескопа (диафраграмирование). Размер зрачка наблюдателя зависит от того, приспособлен ли наблюдатель к темноте и сколько ему лет (максимальный размер зрачка уменьшается с возрастом). Типичный адаптированный к темноте зрачок имеет 7 мм в диаметре. Глаза пожилых наблюдателей могут открываться только на 5 или 6 мм. Предполагая стандартный размер человеческого зрачка в темноте равный 7 мм, есть простое уравнение для минимального увеличения:
Минимальное полезное увеличение = D / 7
D — диаметр объектива в мм
Оптимальное увеличение
Вторая проблема заключается в том, что уменьшение увеличения уменьшает масштаб изображения и детализацию. Наилучшее разрешение человеческого глаза достигается при использовании меньшего диаметра выходного зрачка инструмента. Наблюдательные эксперименты обычно обнаруживают, что для наблюдения объектов глубокого космоса лучшую картинку можно увидеть с выходным зрачком от 2 мм до 3 мм. Это будет увеличение в 35-50 раз на 100мм телескопе, 70-100x на 200мм и 120-175x на 350мм. Более низкое увеличение может быть необходимо, чтобы охватить весь большой объект в одном поле зрения. Но при попытке наблюдать мелкие детали в галактике, или туманности, или в шаровом скоплении звезд, средние увеличения могут оказаться идеальными.
Для просмотра планет можно использовать более высокую кратность. Конечно, каждый объект, телескоп и наблюдатель уникальны, поэтому определенные увеличения могут быть лучше для определенных комбинаций. У большинства астрономов есть три окуляра — один большой кратности, один средний и один низкий — для покрытия различных условий наблюдения. Обычно они находятся в диапазоне от 50x до 250x, так как он охватывает все, от широкого поля до высокой кратности. Большое увеличение может быть полезно для отличных ночей, но, скорее всего, это будет окуляр, который редко используется. Меньшая мощность может быть полезна для более широких полей зрения.
Посмотрите на калькулятор увеличения, чтобы определить кратность любой комбинации окуляра и телескопа.
Надеюсь данная статья окажется для кого-то полезной!
Всем чистого неба и успешных наблюдений!
Константин Радченко, главный редактор группы «Open Astronomy».
Источник
Увеличение телескопа
Каждый, кто выбирает свой первый телескоп, обращает внимание на такую характеристику как увеличение телескопа. Как узнать какое увеличение дает телескоп? Какое увеличение нужно, чтобы рассмотреть кратеры на Луне, кольца Сатурна, спутники Юпитера? Что такое максимально полезное увеличение? На все эти важные вопросы мы постараемся ответить в данной статье.
Увеличение — самая ли важная характеристика телескопа?
Детали поверхности Марса при одинаковом увеличении с телескопом различных апертур.
Практически каждый начинающий любитель космоса, считает, что увеличение телескопа это его главная характеристика и старается подобрать телескоп с максимально возможным увеличением. Но так ли важно увеличение телескопа? Несомненно, увеличение телескопа является одной из основных характеристик телескопа, но не единственной значимой. Чтобы получить изображение объекта через телескоп не только большим, но максимально детальным, необходимо, чтобы в телескопе использовалась высококачественная стеклянная оптика, в рефракторах — сложные просветленные линзы, а в рефлекторах — параболические зеркала. Также важно и качество окуляров, которые Вы используете.
Как рассчитать увеличение телескопа?
Вид Сатурна при увеличении 200 и 50 крат.
Возможное увеличение телескопа зависит от его первоначальных параметров: диаметра апертуры, фокусного расстояния и применяемых окуляров. Смена увеличения достигается путем смены окуляров и их комбинацией с линзой Барлоу. Чтобы рассчитать увеличение телескопа, нужно воспользоваться нехитрой формулой: Г=F/f , где Г — увеличение телескопа, F – фокусное расстояние телескопа, f – фокусное расстояние окуляра. Фокусное расстояние телескопа обычно указано на его корпусе или в его описании, а фокусное расстояние окуляра всегда написано на его корпусе. Приведем пример. Фокусное расстояние телескопа Sky-Watcher 707AZ2 – 700 мм, при наблюдении с окуляром с фокусным расстоянием 10 мм дает увеличение — 70 крат(700/10 = 70). Если поставить окуляр с фокусным расстоянием 25 мм, то мы получим увеличение — 28 крат(700/25 = 28). При использовании линзы Барлоу, можно достигнуть больших увеличений, т. к. линза Барлоу увеличивает фокусное расстояние телескопа в несколько раз, в зависимости от кратности самой линзы Барлоу. Например, при использовании 2-кратной линзы Барлоу с телескопом Sky-Watcher 707AZ2 и окуляром с фокусным расстоянием 10 мм, мы получим увеличение уже не 70, а 140 крат.
Максимальное полезное увеличение телескопа.
Фокусное расстояние окуляра указано на его корпусе.
В оптике есть такое понятие как максимальное полезное увеличение телескопа. Это значения увеличений, которые позволяет достигнуть оптическая система телескопа без потери качества изображения. Теоретически, при использовании комбинаций короткофокусных окуляров и мощных линз Барлоу даже на небольших телескопах можно получить очень большие значения увеличений, но такие манипуляции не имеют смысла, т. к. оптическая система телескопа ограничена его диаметром и качеством оптики.
Вид Сатурна при недостаточном, оптимальном и чрезмерном увеличении.
При очень больших увеличениях Вы не получите достаточно яркую и четкую картинку. Поэтому при выборе телескопа, важно обращать внимание на такую характеристику как — максимально полезное увеличение. Максимально полезное увеличение рассчитывается для каждого телескопа индивидуально по простой формуле Г max=2*D , где Г max — максимальное полезное увеличение, а D – апертура(диаметр объектива или главного зеркала). Для примера, если телескоп имеет апертуру 130 мм, то максимальное полезное увеличение для такого телескопа составит 260 крат.
Луна при увеличение 50 крат.
Будьте внимательны при изучении параметров телескопа в его описании. Иногда производители заявляют слишком завышенные цифры, например увеличения до 600 крат. Надо понимать, что таких величин можно достигнуть при диаметре апертуры не менее 300 мм, и то скорее всего на таком увеличении Вы столкнетесь с другой проблемой — сильными искажениями от земной атмосферы.
Что можно увидеть в телескоп при различных увеличениях?
Лунный рельеф при увеличение в 350 крат.
- Для наблюдения полной Луны, чтобы ее диск полностью умещался в поле зрения достаточно увеличения — 30-40 крат. Луна является очень близким и крупным объектом, на небе полный лунный диск занимает 0,5 градуса, и если поставить окуляр дающий 100 крат и больше, то Вы будете иметь возможность рассматривать Лунный рельеф в достаточно мелких подробностях — увидите кратеры различного диаметра, горные цепочки и моря.
- Для рассмотрения деталей на поверхности планет, следует применять уже большие увеличения — от 100 крат и больше, т.к. диски планет имеют небольшие угловые размеры. С увеличением от 100 крат возможно рассмотреть диск Сатурна и его кольца с крупнейшими спутниками, облачный покров Юпитера и 4 его крупнейших спутника, увидеть Марсианскую поверхность с темными областями и полярными шапками.
- Для того, чтобы рассматривать объекты дальнего космоса, такие как звездные скопления, водородные туманности и галактики понадобятся разные увеличения — для протяженных слабых объектов, например туманностей — широкоугольные окуляры с полем зрения от 60 градусов и дополнительные светофильтры для большей контрастности.
- Если же Вы выбрали для наблюдения яркий компактный объект, такой как планетарная туманность, например туманность М57 «Кольцо», то понадобятся большие увеличения от 200 крат и больше, а также, фильтры для наблюдения туманностей.
- При наблюдении одиночных звезд в телескоп не имеет смысл ставить большие увеличения, т. к. при любом увеличении — звезда в телескоп выглядит как сияющая точка. Если звезда выглядит как блин или кольцо, значит фокусировка сделана неправильно или ваш телескоп имеет не достаточно качественную оптику.
- Большие увеличение необходимо применять, если Вы хотите наблюдать двойные и кратные звездные системы, с различимыми компонентами в телескоп.
Совет:
При выборе телескопа — обращайте внимание на его комплектацию. Необходимо, чтобы в комплекте были различные окуляры, позволяющие достигнуть различных увеличений, в том числе и максимально полезного. Иногда производители экономят на аксессуарах, делая упор на качество самого телескопа. В таком случае, необходимо самостоятельно докупать окуляры. Обычно это бывает у высококлассных моделей с дорогой оптикой, с которыми необходимо использовать окуляры такого же высокого класса.
Источник