Меню

Весь водород во вселенной

Новости

Залы планетария: 10:00 — 21:00
«Ретро-кафе»: 10:00 — 20:00
Выходной день: вторник

Музей Лунариум временно закрыт.
Ознакомьтесь с правилами посещения.

+7 (495) 221-76-90
АО «Планетарий» © 2017 г. Москва, ул.Садовая-Кудринская, д. 5, стр. 1

Элементы: Водород – самый распространённый элемент Вселенной

Несмотря на то, что водород является самым распространённым химическим элементом в природе, открыт он был только в 18 веке. В1766 году английский ученый Генри Кавендиш провёл ряд опытов с различными металлами, помещая их в растворы серной и соляной кислот. В результате каждого эксперимента он получал одно и то же легкое газообразное вещество, которое назвал «горючим воздухом». При сжигании «горючий воздух» давал воду. Полученную таким способом воду в 1783 году детально изучил французский химик Антуан Лавуазье, осуществив её анализ, разлагая водяной пар раскалённым железом. Так он установил, что «горючий воздух» входит в состав воды и может быть из неё выделен.


Молекула воды H₂O

Лавуазье дал полученному газу название hydrogène (др. греч. — рождающий воду). Русский термин «водород» предложил химик Михаил Соловьёв в 1824 году — по аналогии с «кислородом» Ломоносова.

Водород — самый легкий, самый простой и самый распространенный химический элемент во Вселенной, обозначается символом H, занимает клетку № 1 в Таблице Менделеева и имеет относительную атомную массу равную 1. При нормальных условиях это бесцветный газ без вкуса и запаха с формулой H2, который, перемешиваясь с воздухом, горюч и взрывоопасен. В больших количествах он присутствует в туманностях, звездах и планетах класса «газовый гигант».

Во Вселенной на долю водорода приходится около 88% всех атомов (примерно 11 % составляют атомы гелия, доля всех остальных вместе взятых элементов — меньше 1 %).


Облако водорода (красное) в созвездии Центавр. Снимок обсерватории Ла-Силья (Чили), 2014 г.

Таким образом, водород — основная составная часть звёзд и межзвёздного газа. Он играет ключевую роль в реакциях первичного и звёздного нуклеосинтеза, который, в свою очередь, является причиной наблюдаемой распространённости химических элементов.

Особое положение, которое занял водород с момента открытия, привлекало внимание ученых различных направлений. Так, в 1815 году английский химик, врач и религиозный философ Уильям Праут анонимно опубликовал статью, в которой впервые предположил, что все атомы построены из простейшего водорода. Если масса водорода равна 1, то атомные массы всех других элементов должны выражаться целыми числами. Противники гипотезы, в частности Якоб Берцелиус, утверждали, что атомные массы элементов не находятся в целочисленных отношениях по отношению к водороду. Уровень развития техники измерения масс атомов в то время был достаточно высок, поэтому изначально ряду учёных удалось опровергнуть его теорию, так как полученный атомный вес (как тогда говорили) например хлора, был равен 35,5. С открытием изотопов в начале 20 века доказательства некорректности гипотезы Праута, основанные на измерениях атомных масс, оказались также ошибочными — дробный атомный вес хлора был следствием того, что природный хлор является смесью разных изотопов, о существовании которых во времена Праута не знали. И сейчас у этой теории есть сторонники и противники, а в историю науки это научное предположение вошло как «Гипотеза Праута».

По распространённости в земной коре водород стоит на 9 месте со средним содержанием около 1% по массе, находясь там, в основном, в виде соединений. Свободный водород H2 относительно редко встречается в земной коре, но в составе воды он принимает активное участие в геохимических процессах. Основной потребитель водорода — химическая промышленность. Более 50 % мирового выпуска водорода идёт на производство аммиака (NH3), ещё 10 % используется для производства метанола (CH3OH). Из этих веществ производят пластмассы, удобрения, взрывчатые вещества и многое другое.

Источник

Водород во вселенной

ВОДОРОД ВО ВСЕЛЕННОЙ

Обычно, чтобы подчеркнуть значение того или иного элемента, говорят если бы его не было, то случилось бы то-то и то-то. Но, как правило, это не более чем риторический прием. А вот водорода может когда-нибудь действительно не стать, потому что он непрерывно сгорает в недрах звезд, превращаясь в инертный гелии. И когда запасы водорода иссякнут, жизнь во Вселенной станет невозможной — и потому, что погаснут солнца, и потому, что не станет воды…

Водород и Вселенная

Когда-то люди обожествляли Солнце. Но теперь оно стало объектом точных исследований, и мы редко задумываемся о том, что само наше существование целиком и полностью зависит от происходящих на нем процессов.

Каждую секунду Солнце излучает в космическое пространство энергию, эквивалентную примерно 4 млн. т массы. Эта энергия рождается в ходе слияния четырех ядер водорода, протонов, в ядро гелия; реакция идет в несколько стадий, а ее суммарный результат записывается вот таким уравнением

4¹H⁺ → ⁴He²⁺ + 2e⁺ + 26,7 Мэв

Читайте также:  V7 club моя вселенная

Много это или мало — 26,7 Мэв на один элементарный акт? Очень много: при «сгорании» 1 г протонов выделяется в 20 млн. раз больше энергии, чем при сгорании 1 г каменного угля. На Земле такую реакцию еще никто не наблюдал: она идет при температуре и давлении, существующих лишь в недрах звезд и еще не освоенных человеком.

Мощность, эквивалентную ежесекундной убыли массы в 4 млн. т, невозможно представить: даже при мощнейшем термоядерном взрыве в энергию превращается всего около 1 кг вещества. Но если отнести всю излучаемую Солнцем энергию к его полной массе, то выяснится невероятное удельная мощность Солнца окажется ничтожно малой-много меньше, чем мощность такого «тепловыделяющего устройства», как сам человек. И расчеты показывают, что Солнце будет светить, не ослабевая, еще по меньшей мере 30 млрд. лет.

Наше Солнце по меньшей мере наполовину состоит из водорода. Всего на Солнце обнаружено 69 химических элементов, но водород — преобладает. Его в 5,1 раза больше, чем гелия, и в 10 тыс. раз (не по весу, а по числу атомов) больше, чем всех металлов, вместе взятых. Этот водород расходуется не только на производство энергии. В ходе термоядерных процессов из него образуются новые химические элементы, а ускоренные протоны выбрасываются в околосолнечное пространство.

Последнее явление, получившее название «солнечного ветра», было открыто сравнительно недавно во время исследования космического пространства с помощью искусственных спутников. Оказалось, что особенно сильные порывы этого «ветра» возникают во время хромосферных вспышек. Достигнув Земли, поток протонов, захваченный ее магнитным полем, вызывает полярные сияния и нарушает радиосвязь, а для космонавтов «солнечный ветер» представляет серьезную опасность. Но только ли этим ограничивается воздействие на Землю потока ядер солнечного водорода? По-видимому, нет. Во-первых, виток протонов рождает вторичное космическое излучение, достигающее поверхности Земли; во-вторых, магнитные бури могут влиять на процессы жизнедеятельности; в-третьих, захваченные магнитным полем Земли ядра водорода не могут не сказываться на ее массообмене с космосом.

Судите сами: сейчас в земной коре из каждых 100 атомов 17 —это атомы водорода. Но свободного водорода на Земле практически не существует: он входит в состав годы минералов, угля, нефти, живых существ… Только вулканические газы иногда содержат немного водорода, который в результате диффузии рассеивается в атмосфере. А так как средняя скорость теплового движения молекул водорода из-за их малой массы очень велика — она близка ко второй космической скорости,— то из слоев атмосферы эти молекулы улетают в космическое пространство.

Но если Земля теряет водород, то почему она не может его получать от того же Солнца? Раз «солнечный ветер» — это ядра водорода, которые захватываются магнитным полем Земли, то почему бы им на ней не остаться? Ведь в атмосфере Земли есть кислород; реагируя с залетевшими ядрами водорода, он свяжет их, и космический водород рано или поздно выпадет на поверхность планеты в виде обыкновенного дождя. Более того, расчет показывает, что масса водорода, содержащегося в воде всех земных океанов, морей, озер и рек, точно равна массе протонов, занесенных «солнечным ветром» за всю историю Земли. Что это — простое совпадение?

…Мы должны сознавать, что наше Солнце, наше водородное Солнце,— это лишь заурядная звезда во Вселенной, что существует неисчислимое множество подобных звезд, удаленных от Земли на сотни, тысячи и миллионы световых лет. И кто знает — может быть именно в диапазоне радиоизлучения межзвездного водорода (запомните— 21 сантиметр!) человечеству впервые удастся связаться с иноземными цивилизациями… Как говорится, поживем — увидим.

Вы читаете, статья на тему Водород во вселенной

Источник

Почему водород — это самый распространенный элемент во Вселенной?

Водород является самым распространенным элементом во Вселенной. Но почему?

Для того чтобы ответить на этот вопрос, мы должны вернуться к Большому взрыву, сказала Майя Найман, профессор химии в Университете штата Орегон.

Большой взрыв привел к созданию всех элементов, которые мы можем найти в периодической таблице. Они являются строительными блоками, помогающими создать Вселенную. Каждый элемент имеет уникальный номер элементарных частиц — протонов (положительно заряженных), нейтронов (нейтральных) и электронов (отрицательно заряженных).

Самый простой и распространенный элемент

Водород имеет только один протон и один электрон (это единственный элемент без нейтрона). Он является самым простым элементом во Вселенной, что объясняет, почему он также самый распространенный, — сказала Найман. Тем не менее изотоп водорода, называемый дейтерием, содержит один протон и один нейтрон, а другой, известный как тритий, имеет один протон и два нейтрона.

В звездах атомы водорода сливаются, чтобы создать гелий – второй наиболее распространенный элемент во Вселенной. Гелий имеет два протона, два нейтрона и два электрона. Вместе гелий и водород составляют 99,9 процента всей известной материи во Вселенной.

Читайте также:  Самая удаленная точка вселенной вид понятия

Тем не менее во Вселенной примерно в 10 раз больше водорода, чем гелия, как говорит Найман. «Кислорода, который является третьим самым распространенным элементом, примерно в 1000 раз меньше, чем водорода», — добавила она.

Если говорить в общем, то чем выше атомный номер элемента, тем меньшее его количество можно найти во Вселенной.

Водород в составе Земли

Состав Земли, однако, отличается от того, который имеет Вселенная. Например, кислород является наиболее распространенным элементом по весу в земной коре. За ним следуют кремний, алюминий и железо. В человеческом организме наиболее распространенным элементом по весу является кислород, а затем — углерод и водород.

Роль в человеческом теле

Водород имеет ряд ключевых ролей в человеческом теле. Водородные связи помогают ДНК оставаться скрученным. Кроме того, водород способствует поддержанию правильного рН в желудке и других органах. Если ваш желудок приобретает слишком щелочную среду, выпускается водород, поскольку он связан с регулированием этого процесса. Если же среда в желудке слишком кислая, водород будет связываться с другими элементами.

Водород в составе воды

Кроме того, именно водород позволяет льду плавать на поверхности воды, так как водородные связи увеличивают расстояние между ее замороженными молекулами, что делает их менее плотными.

Как правило, вещество является более плотным, когда оно находится в твердом состоянии, а не жидком, сказала Найман. Вода является единственным веществом, которое становится менее плотным в твердом виде.

В чем опасность водорода

Тем не менее водород также может быть опасным. Его реакция с кислородом привела к катастрофе дирижабля «Гинденбург», который убил 36 человек в 1937 году. Кроме того, водородные бомбы могут быть невероятно разрушительными, хотя их никогда не использовали в качестве оружия. Тем не менее их потенциал продемонстрировали в 1950-х годах такие страны, как США, СССР, Великобритания, Франция и Китай.

Водородные бомбы, как и атомные, используют сочетание ядерного синтеза и реакций деления, что приводит к разрушениям. При взрыве они создают не только механические ударные волны, но и радиацию.

Источник

Все за сегодня

Политика

Экономика

Наука

Война и ВПК

Общество

ИноБлоги

Подкасты

Мультимедиа

Как Вселенная сотворила материю, создавшую человека

На ранней стадии развития вселенной в ней существовал только водород — самый простой из всех химических элементов. Но его было отнюдь не достаточно для создания таких сложных объектов, как планеты и человек. Со временем материя охладилась настолько, что из протона и отрицательно заряженного электрона образовался атом водорода; к тому моменту, на водород приходилось около 92% всех атомов вселенной, причем, остальные восемь процентов практически полностью приходились на образовавшийся в результате синтеза гелий, очень небольшое количество лития и некоторые другие из самых легких химических элементов. Однако для образования прочих элементов температура на ранней этапе образования вселенной в тот момент была недостаточной, и в космосе наступила темная эра, длившаяся 380 миллионов лет.

Затем во вселенной, по мере ее расширения и охлаждения, стали хозяйничать силы гравитации. В эту эпоху формируются галактики, а вслед за ними — первые звезды. Поначалу они излучали свет благодаря гравитационному сжатию: как только звезда сжималась под давлением собственной массы, водород сильно уплотнялся, а звезда сильно разогревалась. Благодаря гравитации звезды могли излучать свет в течение нескольких миллионов лет, поскольку температура внутри звезды была вполне достаточна для того, чтобы запустить механизм термоядерного синтеза.

Термоядерный синтез в звездах — это поистине величественное явление природы, в ходе которого происходит соединение двух ядер. Однако, не все так просто: в большинстве звезд ядра водорода все равно не могут достаточно близко подлететь друг к другу и, тем самым, запустить термоядерную реакцию, ведь чем ближе ядра водорода друг к другу подлетают, тем сильнее отталкиваются, поскольку оба заряжены положительно. Но, поскольку пара ядер — это квантовые объекты, то для слияния им вовсе не нужно подлетать на очень близкое расстояние, поскольку здесь начинает действовать так называемый туннельный эффект: представьте, сначала оба ядра очень близко подлетают друг к другу, а в следующий момент они уже оказываются соединенными. Эта похоже на то, как если бы оба ядра подлетели к стене, а в следующий момент каким-то чудесным образом оказались по другую сторону.

Но даже квантового волшебства отнюдь не достаточно для того, чтобы звезда продолжала гореть. Для этого необходим не только ядерный синтез, но и продуцирование чего-то стабильного. В результате синтеза двух протонов образуется гелий-II (содержит два протона без нейтронов); он крайне нестабилен и сразу же распадается на два протона. Вместе с тем существует вероятность (1/10000) того, что один из протонов превратится в нейтрон, в результате чего получится стабильный изотоп водорода — дейтерий. В свою очередь, при синтезе водорода и дейтерия образуется устойчивый изотоп гелия, при этом высвобождается гигантское количество энергии — именно так раскрывается гигантский творческий потенциал звезд.

Читайте также:  Самый умный муравей во вселенной

Контекст

Уникальна ли жизнь на Земле?

В нашей галактике много планет, подобных Земле

Мы и музыка

В небольших звездах водород был единственным элементом, который принимал участие в термоядерном синтезе; при уменьшении его запасов звезда угасала. Но после того, как самые большие из первых звезд полностью сжигали весь свой водород с образованием гелия, горение в них продолжало идти по другим законам: как только звезда прекращала сжигать водород, давление внутри нее падало, но гравитация вновь начинала ее сжимать, вследствие чего температура внутри звезды возрастала. И как только она достигала ста миллионов градусов по Кельвину, гелий начинал превращаться в бериллий (ядро бериллия состоит из четырех протонов); в результате взаимодействия гелия и бериллия получался углерод (в его ядре семь протонов) — а это уже основной элемент для жизни на Земле. Синтез углерода происходил в раскаленных недрах звезды; правда, ему еще предстояло пройти очень и очень долгий путь, прежде, чем стать частью человеческого организма. Из углерода в результате синтеза появился азот и кислород (в их ядрах соответственно семь и восемь протонов) — а это еще два элемента необходимых для появления жизни; из этих двух элементов в результате цепи превращений можно получить железо (26 протонов).

Однако трансформация железа в более тяжелые элементы не сопровождается выделением энергии, как это было при термоядерном синтезе более легких элементов — наоборот, при образовании железа происходит поглощение энергии. Если бы более легкие элементы при термоядерном синтезе всегда превращались в более тяжелые, то тогда бы реакция синтеза в недрах звезды проходила в течение неопределенно долгого времени, покуда светило не превратилось бы в нейтронную звезду — огромный однородный шар, состоящий из ядерного материала. Но поскольку при термоядерном синтезе железа ядро звезды охлаждалось, то и сама реакция синтеза затухала. После ее прекращения, первые массивные звезды, вспыхнувшие после Большого взрыва, начинали сжиматься под действием гравитации, что затем приводило к взрыву сверхновой, который сопровождался мощным выбросом вещества из внешней оболочки звезды, богатой углеродом, азотом и кислородом, в межзвездное пространство с одновременным сжатием звездного ядра, которое затем превращалось в нейтронную звезду.

Долгое время считалось, что разнообразие химических элементов, окружающих нас, полностью обусловлено термоядерным синтезом и взрывами сверхновых. Но теперь-то мы знаем, что образовании этих элементов сыграли свою важную роль также и другие экзотичные процессы. Как показали недавно проведенные исследования, золото и остальные редко встречающиеся тяжелые химические элементы образуются в большом количестве при столкновении двух нейтронных звезд. Вполне вероятно, что как раз в результате одного из таких столкновений образовалось все золото, имеющееся на нашей планете.

Превращение водорода в другие химические элементы происходило благодаря редким по своей природе космическим явлениям и квантовым процессам. Первозданную материю и человека объединяет друг с другом длинная цепь случайностей. Вероятность появления каждого из звеньев этой цепи очень мала; к тому же, большую роль в его возникновении играет и сам характер каждого из физических процессов. Так, если бы уровень сильного ядерного взаимодействия, удерживающего вместе два протона, был на два процента больше, то тогда изотоп гелия — гелий-II — оказался бы стабильным; в этом случае, термоядерная реакция протекала бы еще легче, а первое поколение горячих и плотных звезд вообще бы не появилось. Если бы характер протекания любого из физических процессов изменился, то наша вселенная выглядела бы сегодня по-другому, а человек, вероятнее всего, вообще бы не появился.

Иногда к сказанному выше ученые применяют выражение «тонкая настройка» вселенной, в основе которого лежит идея о том, что существование жизни в первую очередь зависит от таких явлений, как термоядерный синтез, протекающий внутри звезд не произвольным, а строго определенным образом. Именно данный факт заставил некоторых ученых обратить свой взор к теологическому обоснованию происхождения вселенной, правда, другие склонились к противоположной точке зрения. В любом случае ясно одно: вселенная проявила себя вовне — и в результате этого появился человек. Вещество, из которого состоит человек и окружающий его мир, явилось на свет в результате превращений водорода под воздействием гравитации и времени.

Брайан Коберлейн — астрофизик, профессор физики Рочестерского технологического института (RIT). Автор статей в области астрономии и астрофизики, опубликованных в его блоге «One Universe at a Time». Адрес в Twitter: @BrianKoberlein.

Материалы ИноСМИ содержат оценки исключительно зарубежных СМИ и не отражают позицию редакции ИноСМИ.

Источник

Adblock
detector