Полярная звезда
Темы для uCoz
Солнце — единственная звезда Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль.
Структуру Солнца можно разделить на внутреннюю и внешнюю. Итак, по порядку от центра наружу.
1) Солнечное ядро является центральной частью Солнца с радиусом
150 000 — 175 000 км, в которой идут термоядерные реакции. Плотность вещества в ядре достигает 150 000 кг/м³ (в 150 раз выше плотности воды и в
6,6 раз выше плотности самого плотного металла на Земле — осмия), температура в центре ядра около 15 000 000 К. По современным данным известно, что скорость вращения ядра Солнца значительно выше, чем поверхностных слоев. В ядре протекает протон-протонная термоядерная реакция, в ходе которой четыре протона превращаются в гелий-4, при этом каждую секунду в излучение преобразуется 4,26 миллиона тонн вещества, что на самом деле является ничтожной долей по сравнению с массой Солнца — 2×10^27 тонн.
Ядро — единственное место на Солнце, в котором в ходе термоядерной реакции производится энергия и тепло, остальная часть звезды нагревается этой энергией, последовательно проходящей сквозь все слои, излучаясь в конечном итоге в виде солнечного света и кинетической энергии.
2) Зона лучистого переноса находится над ядром, на расстояниях примерно от 0,2 до 0,7 радиуса Солнца от его центра, в ней отсутствуют макроскопические движения вещества, а энергия переносится посредством переизлучения фотонов — водород сжат так плотно, что соседние протоны не могут поменяться местами, из-за чего перенос энергии путём перемешивания вещества практически невозможен. Еще одно препятствие для перемешивания вещества — низкая скорость убывания температуры от нижних слоёв к верхним вследствие высокой теплопроводностьи водорода. Прямое излучение наружу также невозможно, так как водород непрозрачен для излучения, происходящего в процессе ядерного синтеза.
Приходящий из солнечного ядра фотон поглощается частицей вещества (атомным ядром либо свободным протоном), после чего возбуждённая частица излучает новый квант света, направление которого никак не зависит от направления поглощённого фотона и может перейти как в вышестоящий слой плазмы в лучистой зоне, так и в более нижний слой. Из-за этого время, за которое многократно переизлучённый фотон достигает конвективной зоны, может составлять миллионы лет (в среднем для Солнца — 170 тысяч лет).
При переизлучении фотона происходит уменьшение его энергии, что в свою очередь влияет на изменение спектрального состава излучения — изначально на входе в зону лучистого переноса все излучение состоит из коротковолнового гамма-излучения, а на выходе из нее диапазон уже охватывает практически все длины волн, в том числе видимый свет.
Предполагается, что звёзды типа Солнца и меньше имеют лучистое ядро и конвективную атмосферу, а звезды больше 1,4 массы Солнца (по другим данным – больше 1,1) имеют конвективное ядро и лучистую атмосферу.
3) Конвективная зона располагается над зоной лучистого переноса. В ней, как и в лучистой зоне, вещество непрозрачно для излучения, однако его плотность уже не настолько велика, что позволяет происходить вихревому перемешиванию плазмы, и энергия переносится к поверхности преимущественно за счет движений самого вещества, то есть путем конвекции (отсюда и название). Процессы, происходящие в конвективной зоне, можно сравнить с подогревом воды в сосуде: огонь нагревает нижние слои воды, и они вследствие теплового расширения вытесняются вверх более тяжёлыми холодными слоями.
Толщина конвективной зоны составляет около 200 000 км. Её роль в физике солнечных явлений очень велика, поскольку именно в ней возникают разнообразные движения солнечного вещества и магнитные поля.
У красных карликов и красных гигантов зона конвекции занимает все пространство от ядра до фотосферы — давление в их недрах не может сжать вещество так сильно, чтобы препятствовать его перемешиванию, и привести к возникновению зоны лучистого переноса.
Атмосфера Солнца (внешнее строение):
1) Фотосфера лежит над конвективной зоной. Фотосфера (слой, излучающий свет) образует видимую поверхность Солнца, из которой исходит подавляющее большинство видимого, оптического излучения Солнца. Температура фотосферы в среднем — 5800 К (по мере приближения к ее внешнему краю уменьшается до 4800 К), средняя плотность газа — менее 1/1000 плотности земного воздуха. Водород при таких условиях находится практически полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д.
Фотосфера практически непрозрачна, она поглощает, а затем переизлучает энергию, приходящую из нижних слоев, в ней перенос энергии также происходит путем конвекции — это наблюдается как грануляция фотосферы (образование гранул — светлых горячих конвективных ячеек). Толщина фотосферы Солнца
300 км, белых звёзд главной последовательности спектрального класса A0V
1000 км, для гигантов класса G
10^4 — 10^5 км, то есть значительно меньше диаметра звезды, результатом чего является резкий видимый край Солнца.
Видимое потемнение края солнечного диска есть следствие роста температуры фотосферы с глубиной, так как при равной оптической длине пути излучение центра диска приходит вертикально с более глубоких, горячих слоёв фотосферы, а излучение периферии диска идет по касательной из более холодных внешних слоёв. На поверхности фотосферы также могут создаваться большие области пониженной температуры (до 1500 К), что проявляется в виде солнечных пятен.
2) Хромосфера — внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Название хромосферы связано с её красным цветом, который является результатом преобладания в спектре красной H-альфа линии водорода. У верхней границы хромосферы нет выраженной гладкой поверхности, из неё часто происходят горячие выбросы — спикулы. Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов.
Вследствие небольшой плотности и яркости хромосферы ее невозможно увидеть в обычных условиях. Увидеть хромосферу можно лишь при полном солнечном затмении – при этом Луна закрывает яркую фотосферу, и хромосфера становится видимой и в красном цвете. Также ее можно наблюдать в любое время через специальные узкополосные оптические фильтры, которые выделяют излучение в определенной яркой хромосферной линии:
— фильтр с красной линией H-альфа (Hα) из серии Бальмера (длина волны 656,3 нм), снимок Солнца через него получается красноватым;
— фильтры двух фиолетовых фраунгоферовых линий ионизованного кальция (линия Ca II K (393,4 нм) и линия Ca II H (396,8 нм)), снимок Солнца через них получается синеватым.
Хромосферу обычно разделют на две зоны:
— нижняя хромосфера простирается примерно до 1500 км, состоит из нейтрального водорода, спектр содержит множество слабых спектральных линий;
— верхняя хромосфера состоит из отдельных спикул, которые выбрасываются нижней хромосферой на высоту до 10 000 км и разделяются более разреженным газом; температура выше, чем у нижней хромосферы, водород преимущественно ионизованный, в спектре — линии водорода, гелия и кальция.
Основные структуры хромосферы, видные в этих линиях:
— хромосферная сетка — покрывает всю поверхность Солнца и состоит из линий, окружающих ячейки супергрануляции размером до 30 т. км. в поперечнике, лучше всего видна в линиях Hα и Ca II K.
— флоккулы — светлые облакоподобные образования, чаще всего находящиеся в районах с сильными магнитными полями и окружающие солнечные пятна, лучше всего видны в линии Hα.
— волокна и волоконца (фибриллы) — тёмные линии разнообразной ширины и протяженности, также часто встречаются в активных областях и лучше всего видны в линии Hα.
3) Корона – последняя, внешняя оболочка, лежащая над хромосферой. Так как плотность вещества в короне незначительна, то несмотря на её огромную температуру (от 600 000 до 5 000 000 градусов), она имеет низкую яркость, и ее можно увидеть невооружённым глазом только во время полного солнечного затмения (совокупный блеск короны составляет от 0,8×10^6 до 1,3×10^6 блеска Солнца). Для наблюдения короны вне затмений применяется внезатменный коронограф..
Чрезвычайно интенсивный нагрев этого слоя вызван, как полагается, магнитным эффектом и воздействием ударных волн. Механизм нагрева короны, вероятно, тот же, что и у хромосферы — из глубины Солнца поднимаются конвективные ячейки (видимые в фотосфере в форме грануляции), что приводит к локальному нарушению равновесия в газе, и это в свою очередь вызывает распространение акустических волн в различных направлениях. Беспорядочное изменение плотности, температуры и скорости вещества, в котором распространяются эти волны, приводит к изменению скорости, частоты и амплитуды акустических волн, зачастую даже движение газа достигает сверхзвуковых значений. Это вызывает ударные волны, кинетическая энергия которых в конечном итоге преобразуется в тепловую.
Во время затмений корона в белом свете наблюдается как лучистая структура, форма которой зависит от фазы солнечного цикла:
— в период максимума солнечных пятен ее форма становится относительно круглой; у солнечного экватора и в полярных областях в короне наблюдаются прямые и направленные вдоль радиуса Солнца лучи;
— в период минимума пятен корональные лучи образуются только в экваториальных и средних широтах, форма короны становится вытянутой, у полюсов появляются характерные короткие лучи — полярные щёточки; при этом общая яркость короны уменьшается.
В короне наблюдаются структуры — корональные арки, лучи, перья, опахала и др. Корональные арки, например, представляют собой петлю (систему петель) магнитного поля с особо плотной плазмой.
Вследствие огромной температуры короны она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят через земную атмосферу, но в настоящий момент имеется возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны неравномерно: есть горячие активные и спокойные области, а также корональные дыры со сравнительно небольшой температурой (600 000 градусов), из которых в пространство выходят магнитные силовые линии. Подобная открытая магнитная конфигурация позволяет частицам свободно покидать Солнце, именно поэтому солнечный ветер исходит преимущественно из корональных дыр.
На сегодняшний день известно, что корона простирается до границ Солнечной системы, а значит Земля, так же, как и другие планеты, находятся внутри короны.
Источник
Строение Солнца
По современным представлениям, Солнце состоит из ряда концентрических сфер, или областей, каждая из которых обладает специфическими особенностями. Схематический разрез Солнца показывает его внешние особенности вместе с гипотетическим внутренним строением. Энергия, освобождаемая термоядерными реакциями в ядре Солнца, постепенно прокладывает путь к видимой поверхности светила. Она переносится посредством процессов, в ходе которых атомы поглощают, переизлучают и рассеивают излучение, т.е. лучевым способом. Пройдя около 80% пути от ядра к поверхности, газ становится неустойчивым, и дальше энергия переносится уже конвекцией к видимой поверхности Солнца и в его атмосферу.
Внутреннее строение Солнца слоистое, или оболочечное, оно состоит из ряда сфер, или областей. В центре находится ядро, затем область лучевого переноса энергии, далее конвективная зона и, наконец, атмосфера. К ней ряд исследователей относят три внешние области: фотосферу, хромосферу и корону. Правда, другие астрономы к солнечной атмосфере относят только хромосферу и корону. Остановимся кратко на особенностях названных сфер.
Ядро — центральная часть Солнца со сверхвысоким давлением и температурой, обеспечивающими течение ядерных реакций. Они выделяют огромное количество электромагнитной энергии в предельно коротких диапазонах волн.
Область лучистого переноса энергии — находится над ядром. Она образована практически неподвижным и невидимым сверхвысокотемпературным газом. Передача через нее энергии, генерируемой в ядре, к внешним сферам Солнца осуществляется лучевым способом, без перемещения газа. Этот процесс надо представлять себе примерно так. Из ядра в область лучевого переноса энергия поступает в предельно коротковолновых диапазонах — гамма излучения, а уходит в более длинноволновом рентгеновском, что связано с понижением температуры газа к периферической зоне.
Конвективная область — располагается над предыдущей. Она образована также невидимым раскаленным газом, находящимся в состоянии конвективного перемешивания. Перемешивание обусловлено положением области между двумя средами, резко различающимися по господствующим в них давлению и температуре. Перенос тепла из солнечных недр к поверхности происходит в результате локальных поднятий сильно нагретых масс воздуха, находящихся под высоким давлением, к периферии светила, где температура газа меньше и где начинается световой диапазон излучения Солнца. Толщина конвективной области оценивается приблизительно в 1/10 часть солнечного радиуса.
Фотосфера — это нижний из трех слоев атмосферы Солнца, расположенный непосредственно на плотной массе невидимого газа конвективной области. Фотосфера образована раскаленным ионизированным газом, температура которого у основания близка к 10000 К (т. е. абсолютная температура), а у верхней границы, расположенной примерно в 300 км выше, порядка 5000 К. Средняя температура фотосферы принимается в 5700 К. При такой температуре раскаленный газ излучает электромагнитную энергию преимущественно в оптическом диапазоне волн. Именно этот нижний слой атмосферы, видимый как желтовато-яркий диск, зрительно воспринимается нами как Солнце.
Через прозрачный воздух фотосферы в телескоп отчетливо просматривается ее основание — контакт с массой непрозрачного воздуха конвективной области. Поверхность раздела имеет зернистую структуру, называемую грануляцией . Зерна, или гранулы, имеют поперечники от 700 до 2000 км. Положение, конфигурация и размеры гранул меняются. Наблюдения показали, что каждая гранула в отдельности выражена лишь какое-то короткое время (около 5-10 мин.), а затем исчезает, заменяясь новой гранулой. На поверхности Солнца гранулы не остаются неподвижными, а совершают нерегулярные движения со скоростью примерно 2 км/сек. В совокупности светлые зерна (гранулы) занимают до 40% поверхности солнечного диска.
Процесс грануляции представляется как наличие в самом нижнем слое фотосферы непрозрачного газа конвективной области — сложной системы вертикальных круговоротов. Светлая ячея — это поступающая из глубины порция более разогретого газа по сравнению с уже охлажденной на поверхности, а потому и менее яркой, компенсационно погружающейся вниз. Яркость гранул на 10-20% больше окружающего фона указывает на различие их температур в 200-300° С.
Образно грануляцию на поверхности Солнца можно сравнить с кипением густой жидкости типа расплавленного гудрона, когда со светлыми восходящими струями появляются пузырьки воздуха, а более темные и плоские участки характеризуют погружающиеся порции жидкости.
Исследования механизма передачи энергии в газовом шаре Солнца от центральной области к поверхности и ее излучение в космическое пространство показали, что она переносится лучами. Даже в конвективной зоне, где передача энергии осуществляется движением газов, большая часть энергии переносится излучением.
Таким образом, поверхность Солнца, излучающая энергию в космическое пространство в световом диапазоне спектра электромагнитных волн, — это разреженный слой газов фотосферы и просматривающаяся сквозь нее гранулированная верхняя поверхность слоя непрозрачного газа конвективной области. В целом зернистая структура, или грануляция, признается свойственной фотосфере — нижнему слою солнечной атмосферы.
Хромосфера. При полном солнечном затмении у самого края затемненного диска Солнца видно розовое сияние — это хромосфера. Она не имеет резких границ, а представляет собой сочетание множества ярких выступов или языков пламени, находящихся в непрерывном движении. Хромосферу сравнивают иногда с горящей степью. Языки хромосферы называют спикулами. Они имеют в поперечнике от 200 до 2000 км (иногда до 10000) и достигают в высоту нескольких тысяч километров. Их надо представлять себе как вырывающиеся из Солнца потоки плазмы (раскаленного ионизированного газа).
Установлено, что переход от фотосферы к хромосфере сопровождается скачкообразным повышением температуры от 5700 К до 8000 — 10000 К. К верхней же границе хромосферы, находящейся приблизительно на высоте 14000 км от поверхности солнца, температура повышается до 15000 — 20000 К. Плотность вещества на таких высотах составляет всего 10-12 г/см3, т. е. в сотни и даже тысячи раз меньше, чем плотность нижних слоев хромосферы.
Солнечная корона — внешняя атмосфера Солнца. Некоторые астрономы называют ее атмосферой Солнца. Она образована наиболее разреженным ионизированным газом. Простирается примерно на расстояние 5 диаметров Солнца, имеет лучистое строение, слабо светится. Ее можно наблюдать только во время полного солнечного затмения . Яркость короны примерно такая же, как у Луны в полнолуние, что составляет лишь около 5/1000000 долей яркости Солнца. Корональные газы в высокой степени ионизированы, что определяет их температуру примерно в 1 млн. градусов. Внешние слои короны излучают в космическое пространство корональный газ — солнечный ветер. Это второй энергетический (после лучистого электромагнитного) поток Солнца, получаемый планетами. Скорость удаления коронального газа от Солнца возрастает от нескольких километров в секунду у короны до 450 км/сек на уровне орбиты Земли, что связано с уменьшением силы притяжения Солнца при увеличении расстояния. Постепенно разреживаясь по мере удаления от Солнца, корональный газ заполняет все межпланетное пространство. Он воздействует на тела Солнечной системы как непосредственно, так и через магнитное поле, которое несет с собой. Оно взаимодействует с магнитными полями планет. Именно корональный газ (солнечный ветер) является основной причиной полярных сияний на Земле и активности других процессов магнитосферы.
Источник